The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation

被引:130
作者
Schaft, D
Roguev, A
Kotovic, KM
Shevchenko, A
Sarov, M
Shevchenko, A
Neugebauer, KM
Stewart, AF
机构
[1] MPI CBG, Tech Univ Dresden, BIOTEC, D-01307 Dresden, Germany
[2] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
关键词
D O I
10.1093/nar/gkg372
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Existing evidence indicates that SET2, the histone 3 lysine 36 methyltransferase of Saccharomyces cerevisiae, is a transcriptional repressor. Here we show by five main lines of evidence that SET2 is involved in transcriptional elongation. First, most, if not all, subunits of the RNAP II holoenzyme co-purify with SET2. Second, all of the co-purifying RNAP II subunit, RPO21, was phosphorylated at serines 5 and 2 of the C-terminal domain (CTD) tail, indicating that the SET2 association is specific to either the elongating or SSN3 repressed forms (or both) of RNAP II. Third, the association of SET2 with CTD phosphorylated RPO21 remained in the absence of ssn3. Fourth, in the absence of ssn3, mRNA production from gal1 required SET2. Fifth, SET2 was detected on gal1 by in vivo crosslinking after, but not before, the induction of transcription. Similarly, SET2 physically associated with the transcribed region of pdr5 but was not detected on gal1 or pdr5 promoter regions. Since SET2 is also a histone methyltransferase, these results suggest a role for histone 3 lysine 36 methylation in transcriptional elongation.
引用
收藏
页码:2475 / 2482
页数:8
相关论文
共 33 条
  • [1] GENETIC INTERACTION BETWEEN TRANSCRIPTION ELONGATION-FACTOR TFIIS AND RNA POLYMERASE-II
    ARCHAMBAULT, J
    LACROUTE, F
    RUET, A
    FRIESEN, JD
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (09) : 4142 - 4152
  • [2] Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    Bannister, AJ
    Zegerman, P
    Partridge, JF
    Miska, EA
    Thomas, JO
    Allshire, RC
    Kouzarides, T
    [J]. NATURE, 2001, 410 (6824) : 120 - 124
  • [3] Methylation of histone H3 Lys 4 in coding regions of active genes
    Bernstein, BE
    Humphrey, EL
    Erlich, RL
    Schneider, R
    Bouman, P
    Liu, JS
    Kouzarides, T
    Schreiber, SL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) : 8695 - 8700
  • [4] Quantitation of the RNA polymerase II transcription machinery in yeast
    Borggrefe, T
    Davis, R
    Bareket-Samish, A
    Kornberg, RD
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (50) : 47150 - 47153
  • [5] Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase
    Chi, Y
    Huddleston, MJ
    Zhang, XL
    Young, RA
    Annan, RS
    Carr, SA
    Deshaies, RJ
    [J]. GENES & DEVELOPMENT, 2001, 15 (09) : 1078 - 1092
  • [6] Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain
    Cho, EJ
    Kobor, MS
    Kim, M
    Greenblatt, J
    Buratowski, S
    [J]. GENES & DEVELOPMENT, 2001, 15 (24) : 3319 - 3329
  • [7] Architecture of RNA polymerase II and implications for the transcription mechanism
    Cramer, P
    Bushnell, DA
    Fu, JH
    Gnatt, AL
    Maier-Davis, B
    Thompson, NE
    Burgess, RR
    Edwards, AM
    David, PR
    Kornberg, RD
    [J]. SCIENCE, 2000, 288 (5466) : 640 - 649
  • [8] Hecht A, 1999, METHOD ENZYMOL, V304, P399
  • [9] Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases
    Hengartner, CJ
    Myer, VE
    Liao, SM
    Wilson, CJ
    Koh, SS
    Young, RA
    [J]. MOLECULAR CELL, 1998, 2 (01) : 43 - 53
  • [10] Dissecting the regulatory circuitry of a eukaryotic genome
    Holstege, FCP
    Jennings, EG
    Wyrick, JJ
    Lee, TI
    Hengartner, CJ
    Green, MR
    Golub, TR
    Lander, ES
    Young, RA
    [J]. CELL, 1998, 95 (05) : 717 - 728