Efficient computation and model selection for the support vector regression

被引:49
作者
Gunter, Lacey [1 ]
Zhu, Ji [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
10.1162/neco.2007.19.6.1633
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this letter, we derive an algorithm that computes the entire solution path of the support vector regression (SVR). We also propose an unbiased estimate for the degrees of freedom of the SVR model, which allows convenient selection of the regularization parameter.
引用
收藏
页码:1633 / 1655
页数:23
相关论文
共 32 条
[1]  
ALLGOWER EL, 1993, ACTA NUMER, V2, P1
[2]  
[Anonymous], 1999, CD9914 NAT U SING DE
[3]  
AVPNIK V, 1996, ADV NEURAL INFORMATI, V9
[4]   Training ν-support vector regression:: Theory and algorithms [J].
Chang, CC ;
Lin, CJ .
NEURAL COMPUTATION, 2002, 14 (08) :1959-1977
[5]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[6]   Leave-one-out bounds for support vector regression model selection [J].
Chang, MW ;
Lin, CJ .
NEURAL COMPUTATION, 2005, 17 (05) :1188-1222
[7]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[8]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[9]  
DECOSTE D, 2000, P 6 ACM SIGKDD