Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation

被引:355
作者
Elzinga, Evert J. [1 ]
Sparks, Donald L.
机构
[1] ETH, Inst Biogeochem & Pollutant Dynam, CH-8092 Zurich, Switzerland
[2] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19717 USA
关键词
adsorption; ATR-FTIR spectroscopy; phosphate; hematite; in situ; speciation; protonation; surface complexation;
D O I
10.1016/j.jcis.2006.12.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phosphate adsorption on hematite was characterized as a function of pH (3.5-8.9) and phosphate concentration (5-500 mu M) by in situ ATR-FTIR spectroscopy. Under most conditions a mixture of different (inner-sphere) phosphate complexes existed at the hematite surface, with the relative importance of these complexes varying with pH and surface coverage. Experiments using D2O and H2O indicated the presence of two protonated phosphate surface complexes at pH/pD = 3.5-7.0. Comparison to spectra of protonated aqueous phosphate species suggested that these surface complexes are monoprotonated. The difference in the IR spectra of these complexes is tentatively interpreted to result from a different surface coordination. with one surface complex coordinated in a monodentate binuclear (bridging) fashion, and the second as a monodentate mononuclear complex. Alternatively, the bridging complex may be a (protonated) monodentate mononuclear complex exhibiting strong hydrogen bonding to an adjacent surface site. and the second species a monodentate complex exhibiting limited hydrogen bonding. Formation of the bridging complex is favored at lower pH values and higher surface loadings in the 3.5-7.0 pH range. At the highest pH values studied (8.5-9.0) a third complex, interpreted to be a nonprotonated monodentate mononuclear complex, is present along with the monodentate monoprotonated surface species. The importance of the nonprotonated monodentate complex increases with increasing surface coverage at these high pH values. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 28 条
[1]   Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface [J].
Antelo, J ;
Avena, M ;
Fiol, S ;
López, R ;
Arce, F .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 285 (02) :476-486
[2]   ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface [J].
Arai, Y ;
Sparks, DL .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 241 (02) :317-326
[3]   INFRARED STUDY OF PHOSPHATE ADSORPTION ON GOETHITE [J].
ATKINSON, RJ ;
PARFITT, RL ;
SMART, RS .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1974, 70 (08) :1472-1479
[4]   Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite [J].
Bargar, JR ;
Reitmeyer, R ;
Davis, JA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (14) :2481-2484
[5]   ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite [J].
Bargar, JR ;
Kubicki, JD ;
Reitmeyer, R ;
Davis, JA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (06) :1527-1542
[6]   Phosphate adsorption onto TiO2 from aqueous solutions:: An in situ internal reflection infrared spectroscopic study [J].
Connor, PA ;
McQuillan, AJ .
LANGMUIR, 1999, 15 (08) :2916-2921
[7]   Spectroscopic studies of Pb(II)-sulfate interactions at the goethite-water interface [J].
Elzinga, EJ ;
Peak, D ;
Sparks, DL .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2001, 65 (14) :2219-2230
[8]   In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions [J].
Hug, SJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 188 (02) :415-422
[9]   IN-SITU FOURIER-TRANSFORM INFRARED SPECTROSCOPIC EVIDENCE FOR THE FORMATION OF SEVERAL DIFFERENT SURFACE COMPLEXES OF OXALATE ON TIO2 IN THE AQUEOUS-PHASE [J].
HUG, SJ ;
SULZBERGER, B .
LANGMUIR, 1994, 10 (10) :3587-3597
[10]   Molecular orbital theory study on surface complex structures of phosphates to iron hydroxides: Calculation of vibrational frequencies and adsorption energies [J].
Kwon, KD ;
Kubicki, JD .
LANGMUIR, 2004, 20 (21) :9249-9254