Functional genomics of neural and behavioral plasticity

被引:110
作者
Hofmann, HA [1 ]
机构
[1] Harvard Univ, Bauer Ctr Genom Res, Cambridge, MA 02138 USA
来源
JOURNAL OF NEUROBIOLOGY | 2003年 / 54卷 / 01期
关键词
neural and behavioral plasticity; genomics; brain and behavior;
D O I
10.1002/neu.10172
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
How does the environment, particularly the social environment, influence brain and behavior and what are the underlying physiologic, molecular, and genetic mechanisms? Adaptations of brain and behavior to changes in the social or physical environment are common in the animal world, either as short-term (i.e., modulatory) or as long-term modifications (e.g., via gene expression changes) in behavioral or physiologic properties. The study of the mechanisms and constraints underlying these dynamic changes requires model systems that offer plastic phenotypes as well as a sufficient level of quantifiable behavioral complexity while being accessible at the physiological and molecular level. In this article, I explore how the new field of functional genomics can contribute to an understanding of the complex relationship between genome and environment that results in highly plastic phenotypes. This approach will lead to the discovery of genes under environmental control and provide the basis for the study of the interrelationship between an individual's gene expression profile and its social phenotype in a given environmental context. (C) 2003 Wiley Periodicals. Inc.
引用
收藏
页码:272 / 282
页数:11
相关论文
共 82 条
[1]   Aligning gene expression time series with time warping algorithms [J].
Aach, J ;
Church, GM .
BIOINFORMATICS, 2001, 17 (06) :495-508
[2]   Ecology - Phenotypic plasticity in the interactions and evolution of species [J].
Agrawal, AA .
SCIENCE, 2001, 294 (5541) :321-326
[3]   Robustness in bacterial chemotaxis [J].
Alon, U ;
Surette, MG ;
Barkai, N ;
Leibler, S .
NATURE, 1999, 397 (6715) :168-171
[4]  
Avital E., 2000, Animal traditions: behavioural inheritance in evolution
[5]   Are complex behaviors specified by dedicated regulatory genes?: Reasoning from Drosophila [J].
Baker, BS ;
Taylor, BJ ;
Hall, JC .
CELL, 2001, 105 (01) :13-24
[6]   Robustness in simple biochemical networks [J].
Barkai, N ;
Leibler, S .
NATURE, 1997, 387 (6636) :913-917
[7]  
Barlow G.W., 2000, The cichlid fishes: Nature's grand experiment in evolution
[8]  
Barrett T, 2001, RESTOR NEUROL NEUROS, V18, P127
[9]   Quantitative analysis of mRNA amplification by in vitro transcription [J].
Baugh, L. R. ;
Hill, A. A. ;
Brown, E. L. ;
Hunter, Craig P. .
NUCLEIC ACIDS RESEARCH, 2001, 29 (05)
[10]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371