4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement

被引:121
作者
Cong, Yao [1 ]
Baker, Matthew L. [1 ]
Jakana, Joanita [1 ]
Woolford, David [1 ]
Miller, Erik J. [2 ,3 ]
Reissmann, Stefanie [2 ,3 ]
Kumar, Ramya N. [2 ,3 ]
Redding-Johanson, Alyssa M. [4 ]
Batth, Tanveer S. [4 ]
Mukhopadhyay, Aindrila [4 ]
Ludtke, Steven J. [1 ]
Frydman, Judith [2 ,3 ]
Chiu, Wah [1 ]
机构
[1] Baylor Coll Med, Verna & Marrs Mclean Dept Biochem & Mol Biol, Natl Ctr Macromol Imaging, Houston, TX 77030 USA
[2] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[3] Stanford Univ, BioX Program, Stanford, CA 94305 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
asymmetric reconstruction; atomic model; subunit structure; PARTICLE ELECTRON CRYOMICROSCOPY; EUKARYOTIC CYTOSOLIC CHAPERONIN; PROTEIN-FOLDING MACHINE; GROUP-II CHAPERONINS; CRYSTAL-STRUCTURE; SUBSTRATE-BINDING; IN-VIVO; MECHANISM; CCT; AGGREGATION;
D O I
10.1073/pnas.0913774107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of similar to 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique hetero-oligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7 angstrom resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-angstrom resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a C alpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed similar to 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.
引用
收藏
页码:4967 / 4972
页数:6
相关论文
共 48 条
[1]   Gene duplication and the evolution of group II chaperonins: Implications for structure and function [J].
Archibald, JM ;
Blouin, C ;
Doolittle, WF .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 135 (02) :157-169
[2]   Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers [J].
Behrends, Christian ;
Langer, Carola A. ;
Boteva, Raina ;
Bottcher, Ulrike M. ;
Stemp, Markus J. ;
Schaffar, Gregor ;
Rao, Bharathi Vasudeva ;
Giese, Armin ;
Kretzschmar, Hans ;
Siegers, Katja ;
Hartl, F. Ulrich .
MOLECULAR CELL, 2006, 23 (06) :887-897
[3]  
BLOW D, 2002, OUTLINE CRYSTALLOGRA, P191
[4]   Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT [J].
Booth, Christopher R. ;
Meyer, Anne S. ;
Cong, Yao ;
Topf, Maya ;
Sali, Andrej ;
Ludtke, Steven J. ;
Chiu, Wah ;
Frydman, Judith .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (07) :746-753
[5]   Fast rotational matching of single-particle images [J].
Cong, Y ;
Jiang, W ;
Birmanns, S ;
Zhou, ZH ;
Chiu, W ;
Wriggers, W .
JOURNAL OF STRUCTURAL BIOLOGY, 2005, 152 (02) :104-112
[6]   2D fast rotational matching for image processing of biophysical data [J].
Cong, Y ;
Kovacs, JA ;
Wriggers, W .
JOURNAL OF STRUCTURAL BIOLOGY, 2003, 144 (1-2) :51-60
[7]   Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy [J].
Cong, Yao ;
Zhang, Qinfen ;
Woolford, David ;
Schweikardt, Thorsten ;
Khant, Htet ;
Dougherty, Matthew ;
Ludtke, Steven J. ;
Chiu, Wah ;
Decker, Heinz .
STRUCTURE, 2009, 17 (05) :749-758
[8]   MolProbity: all-atom contacts and structure validation for proteins and nucleic acids [J].
Davis, Ian W. ;
Leaver-Fay, Andrew ;
Chen, Vincent B. ;
Block, Jeremy N. ;
Kapral, Gary J. ;
Wang, Xueyi ;
Murray, Laura W. ;
Arendall, W. Bryan, III ;
Snoeyink, Jack ;
Richardson, Jane S. ;
Richardson, David C. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W375-W383
[9]   Refinement of Protein Structures into Low-Resolution Density Maps Using Rosetta [J].
DiMaio, Frank ;
Tyka, Michael D. ;
Baker, Matthew L. ;
Chiu, Wah ;
Baker, David .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 392 (01) :181-190
[10]   Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT [J].
Ditzel, L ;
Löwe, J ;
Stock, D ;
Stetter, KO ;
Huber, H ;
Huber, R ;
Steinbacher, S .
CELL, 1998, 93 (01) :125-138