Information-theoretic approach to quantum error correction and reversible measurement

被引:69
作者
Nielsen, MA [1 ]
Caves, CM
Schumacher, B
Barnum, H
机构
[1] Univ New Mexico, Dept Phys & Astron, Ctr Adv Studies, Albuquerque, NM 87131 USA
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Kenyon Coll, Dept Phys, Gambier, OH 43022 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1998年 / 454卷 / 1969期
基金
美国国家科学基金会;
关键词
quantum operations; information-theoretic characterization; reversible measurement;
D O I
10.1098/rspa.1998.0160
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation and reversing quantum measurements. We derive information-theoretic conditions and equivalent algebraic conditions that are necessary and sufficient for a general quantum operation to be reversible. We analyse the thermodynamic cost of error correction and show that error correction can be regarded as a kind of 'Maxwell demon', for which there is an entropy cost associated with information obtained from measurements performed during error correction. A prescription for thermodynamically efficient error correction is given.
引用
收藏
页码:277 / 304
页数:28
相关论文
共 27 条
[1]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[2]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[3]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   THE THERMODYNAMICS OF COMPUTATION - A REVIEW [J].
BENNETT, CH .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (12) :905-940
[6]  
CALDERBANK AR, 1996, QUANTPH9608006 LANL
[7]  
CAVES CM, 1990, COMPLEXITY ENTROPY P, P91
[8]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[9]  
Gardiner C. W., 2000, QUANTUM NOISE
[10]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868