cDNA isolation, functional expression, and characterization of (+)-α-pinene synthase and (-)-α-pinene synthase from loblolly pine (Pinus taeda):: Stereocontrol in pinene biosynthesis

被引:121
作者
Phillips, MA
Wildung, MR
Williams, DC
Hyatt, DC
Croteau, R [1 ]
机构
[1] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
[2] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA
关键词
pinene synthase cDNA; pinenes; geranyl diphosphate; monoterpene synthase; turpentine biosynthesis; loblolly pine; Pinus taeda;
D O I
10.1016/S0003-9861(02)00746-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The complex mixture of monoterpenes, sesquiterpenes, and diterpenes that comprises oleoresin provides the primary defense of conifers against bark beetles and their associated fungal pathogens. Monoterpene synthases produce the turpentine fraction of oleoresin, which allows mobilization of the diterpene resin acid component (rosin) and is also toxic toward invading insects; this is particularly the case for alpha-pinene, a prominent bicyclic monoterpene of pine turpentine. The stereochemistry of alpha-pinene is a critical determinant of host defense capability and has implications for host selection, insect pheromone biosynthesis, and tritrophic-level interactions. Pines produce both enantionters of alpha-pinene, which appear to arise through antipodal reaction mechanisms by distinct enzymes. Using a cDNA library constructed with mRNA from flushing needles of loblolly pine (Pinus taeda), we employed a homology-based cloning strategy to isolate, and confirm by functional expression, the genes encoding (+)-(3R:5R)-alpha-pinene synthase, (-)-(3S:5S)-alpha-pinene synthase, and several other terpene synthases. The pinene synthases, which produce mirror-image products, share only 66% amino acid identity (72% similarity) but are similar in general properties to other monoterpene synthases of gymnosperms. The stereochemical control of monoterpene cyclization reactions, the evolution of "antipodal" enzymes, and the implications of turpentine composition in ecological interactions are discussed. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 59 条
[1]  
ASHBY MN, 1990, J BIOL CHEM, V265, P13157
[2]  
BAISIER M, 1988, P359
[3]   Monoterpene synthases from Grand fir (Abies grandis) - cDNA isolation, characterization, and functional expression of myrcene synthase, (-)(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase [J].
Bohlmann, J ;
Steele, CL ;
Croteau, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (35) :21784-21792
[4]   Terpenoid-based defenses in conifers:: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis) [J].
Bohlmann, J ;
Crock, J ;
Jetter, R ;
Croteau, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (12) :6756-6761
[5]   Plant terpenoid synthases: Molecular biology and phylogenetic analysis [J].
Bohlmann, J ;
Meyer-Gauen, G ;
Croteau, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4126-4133
[6]   cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis) [J].
Bohlmann, J ;
Phillips, M ;
Ramachandiran, V ;
Katoh, S ;
Croteau, R .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1999, 368 (02) :232-243
[7]  
Borden J.H., 1984, P123
[8]  
Byers John A., 1995, P154
[9]  
Cane D. E., 1999, Comprehensive Natural Products Chemistry, P155, DOI [DOI 10.1016/B978-0-08-091283-7.00039-4, 10.1016/B978-0-08-091283-7.00039-4]
[10]   BIOSYNTHESIS AND CATABOLISM OF MONOTERPENOIDS [J].
CROTEAU, R .
CHEMICAL REVIEWS, 1987, 87 (05) :929-954