The mechanisms underlying epitope selection and the potential impact of inummodominance hierarchies on peptide-based vaccines are not well understood. Recently, we have shown that two immumodominant MHC class I-restricted epitopes, NP366-374 /D-h (nucleoprotein (NP)) and PA(224-233)/D-h (acidic polymerase (PA)), which drive the CD8(+) T cell response to influenza virus infection in C57BL/6 mice, are differentially expressed on infected cells. Whereas NP appears to be strongly expressed on all infected cells, PA appears to be strongly expressed on dendritic cells but only weakly expressed on nondendritic cells. Thus, the immune response to influenza virus may involve T cells specific for epitopes, such as PA, that are poorly expressed it the site of infection. To examine the consequences of differential Ag presentation on peptide vaccination, we compared the kinetics of the T cell response and influenza virus clearance in mice vaccinated with the NP or PA peptide. Vaccination with either the NP or PA peptide resulted in accelerated and enhanced Ag-specific, T cell responses at the site of infection following influenza virus challenge. These T cells were fully functional in terms of their ability to produce IFN-gamma and TNF-alpha and to mediate cytolytic activity. Despite this enhancement of the Ag-specific T cell response, PA vaccination had a detrimental effect on the clearance of influenza virus compared with unvaccinated or NP-vaccinated mice. These data suggest that differential Ag presentation impacts the efficacy of T cell responses to, specific epitopes and that this needs to be considered for the development of peptide-based vaccination strategies.