Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry

被引:152
作者
Lin, S
Fagan, KA
Li, KX
Shaul, PW
Cooper, DMF
Rodman, DM
机构
[1] Univ Colorado, Hlth Sci Ctr, CVP Res Lab, Div Pulm Sci & Crit Care Med, Denver, CO 80262 USA
[2] Univ Colorado, Hlth Sci Ctr, Dept Pharmacol, Denver, CO 80262 USA
[3] Univ Colorado, Hlth Sci Ctr, Program Neurosci, Denver, CO 80262 USA
[4] Univ Colorado, Hlth Sci Ctr, Dept Physiol & Biophys, Denver, CO 80262 USA
[5] Univ Texas, SW Med Ctr, Dept Pediat, Dallas, TX 75235 USA
关键词
D O I
10.1074/jbc.275.24.17979
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endothelial nitric-oxide synthase (eNOS), a Ca2+/calmodulin-dependent enzyme, is critical for vascular homeostasis. While eNOS is membrane-associated through its N-myristoylation, the significance of membrane association in locating eNOS near sources of Ca2+ entry is uncertain. To assess the Ca2+ source required for eNOS activation, chimera containing the full-length eNOS cDNA and HA-tagged aequorin sequence (EHA), and MHA (myristoylation deficient EHA) were generated and transfected into COS-7 cells. The EHA chimera was primarily targeted to the plasma membrane while MHA was located intracellularly. Both constructs retained enzymatic eNOS activity and aequorin-mediated Ca2+ sensitivity. The plasma membrane-associated EHA and intracellular MHA were compared in their ability to sense changes in local Ca2+ concentration, demonstrating preferential sensitivity to Ca2+ originating from intracellular pools (MHA) or from capacitative Ca2+ entry (EHA). Measurements of eNOS activation in intact cells revealed that the eNOS enzymatic activity of EHA was more sensitive to Ca2+ influx via capacitative Ca2+ entry than intracellular release, whereas MHA eNOS activity was more responsive to intracellular Ca2+ release. When eNOS activation by CCE was compared with that generated by an equal rise in [Ca2+](i) due to the Ca2+ ionophore ionomycin, a 10-fold greater increase in NO production was found in the former condition. These results demonstrate that EHA and MHA chimera are properly targeted and retain full functions of eNOS and aequorin, and that capacitative Ca2+ influx is the principle stimulus for sustained activation of eNOS on the plasma membrane in intact cells.
引用
收藏
页码:17979 / 17985
页数:7
相关论文
共 47 条
[1]   AEQUORIN LUMINESCENCE - RELATION OF LIGHT-EMISSION TO CALCIUM CONCENTRATION - CALCIUM-INDEPENDENT COMPONENT [J].
ALLEN, DG ;
BLINKS, JR ;
PRENDERGAST, FG .
SCIENCE, 1977, 195 (4282) :996-998
[2]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325
[3]   SIMULTANEOUS MEASUREMENTS OF CA2+ AND NITRIC-OXIDE IN BRADYKININ-STIMULATED VASCULAR ENDOTHELIAL-CELLS [J].
BLATTER, LA ;
TAHA, Z ;
MESAROS, S ;
SHACKLOCK, PS ;
WIER, WG ;
MALINSKI, T .
CIRCULATION RESEARCH, 1995, 76 (05) :922-924
[4]   LOCALIZATION OF NITRIC-OXIDE SYNTHASE INDICATING A NEURAL ROLE FOR NITRIC-OXIDE [J].
BREDT, DS ;
HWANG, PM ;
SNYDER, SH .
NATURE, 1990, 347 (6295) :768-770
[5]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[6]   TRANSFECTED AEQUORIN IN THE MEASUREMENT OF CYTOSOLIC CA2+ CONCENTRATION ([CA2+](C)) - A CRITICAL-EVALUATION [J].
BRINI, M ;
MARSAULT, R ;
BASTIANUTTO, C ;
ALVAREZ, J ;
POZZAN, T ;
RIZZUTO, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (17) :9896-9903
[7]   NUCLEAR CA2+ CONCENTRATION MEASURED WITH SPECIFICALLY TARGETED RECOMBINANT AEQUORIN [J].
BRINI, M ;
MURGIA, M ;
PASTI, L ;
PICARD, D ;
POZZAN, T ;
RIZZUTO, R .
EMBO JOURNAL, 1993, 12 (12) :4813-4819
[8]   NUCLEAR TARGETING OF AEQUORIN - A NEW APPROACH FOR MEASURING NUCLEAR CA2+ CONCENTRATION IN INTACT-CELLS [J].
BRINI, M ;
MARSAULT, R ;
BASTIANUTTO, C ;
POZZAN, T ;
RIZZUTO, R .
CELL CALCIUM, 1994, 16 (04) :259-268
[9]   REGULATION OF CA2+-DEPENDENT NITRIC-OXIDE SYNTHASE IN BOVINE AORTIC ENDOTHELIAL-CELLS [J].
BUCKLEY, BJ ;
MIRZA, Z ;
WHORTON, AR .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 269 (03) :C757-C765
[10]  
BUSCONI L, 1993, J BIOL CHEM, V268, P8410