Plants lacking the main light-harvesting complex retain photosystem II macro-organization

被引:126
作者
Ruban, AV
Wentworth, M
Yakushevska, AE
Andersson, J
Lee, PJ
Keegstra, W
Dekker, JP
Boekema, EJ
Jansson, S
Horton, P
机构
[1] Univ Sheffield, Robert Hill Inst, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, NL-9747 AG Groningen, Netherlands
[3] Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr, S-90187 Umea, Sweden
[4] Vrije Univ Amsterdam, Fac Sci, Div Phys & Astron, NL-1081 HV Amsterdam, Netherlands
基金
英国生物技术与生命科学研究理事会; 美国国家卫生研究院;
关键词
D O I
10.1038/nature01344
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII)(2) that bind 70% of PSII chlorophyll and three minor monomeric complexes(3)-which together form PSII supercomplexes(4-6). The antenna complexes are essential for collecting sunlight and regulating photosynthesis(7-9), but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers(10) have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function.
引用
收藏
页码:648 / 652
页数:5
相关论文
共 30 条
[1]   Molecular recognition in thylakoid structure and function [J].
Allen, JF ;
Forsberg, J .
TRENDS IN PLANT SCIENCE, 2001, 6 (07) :317-326
[2]   Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: Implications for the mechanism of protective energy dissipation [J].
Andersson, J ;
Walters, RG ;
Horton, P ;
Jansson, S .
PLANT CELL, 2001, 13 (05) :1193-1204
[3]  
ANDERSSON J, IN PRESS PLANT J
[4]   Photosystem II: a multisubunit membrane protein that oxidises water [J].
Barber, J .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (04) :523-530
[5]   A HIGHLY RESOLVED, OXYGEN-EVOLVING PHOTOSYSTEM-II PREPARATION FROM SPINACH THYLAKOID MEMBRANES - ELECTRON-PARAMAGNETIC-RES AND ELECTRON-TRANSPORT PROPERTIES [J].
BERTHOLD, DA ;
BABCOCK, GT ;
YOCUM, CF .
FEBS LETTERS, 1981, 134 (02) :231-234
[6]   Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria [J].
Bibby, TS ;
Nield, J ;
Barber, J .
NATURE, 2001, 412 (6848) :743-745
[7]   Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts [J].
Boekema, EJ ;
van Breemen, JFL ;
van Roon, H ;
Dekker, JP .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 301 (05) :1123-1133
[8]   Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes [J].
Boekema, EJ ;
van Roon, H ;
Calkoen, F ;
Bassi, R ;
Dekker, JP .
BIOCHEMISTRY, 1999, 38 (08) :2233-2239
[9]   Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes [J].
Boekema, EJ ;
van Roon, H ;
van Breemen, JFL ;
Dekker, JP .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 266 (02) :444-452
[10]   A giant chlorophyll-protein complex induced by iron defciency in cyanobacteria [J].
Boekema, EJ ;
Hifney, A ;
Yakushevska, AE ;
Piotrowski, M ;
Keegstra, W ;
Berry, S ;
Michel, KP ;
Pistorius, EK ;
Kruip, J .
NATURE, 2001, 412 (6848) :745-748