Glucose uptake is increased in trained vs. untrained muscle during heavy exercise

被引:63
作者
Kristiansen, S [1 ]
Gade, J [1 ]
Wojtaszewski, JFP [1 ]
Kiens, B [1 ]
Richter, EA [1 ]
机构
[1] Univ Copenhagen, Copenhagen Muscle Res Ctr, Dept Human Physiol, DK-2100 Copenhagen, Denmark
关键词
glucose transporter-4; human skeletal muscle; glycogen;
D O I
10.1152/jappl.2000.89.3.1151
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Endurance training increases muscle content of glucose transporter proteins (GLUT-4) but decreases glucose utilization during exercise at a given absolute submaximal intensity. We hypothesized that glucose uptake might be higher in trained vs. untrained muscle during heavy exercise in the glycogen-depleted state. Eight untrained subjects endurance trained one thigh for 3 wk using a knee-extensor ergometer. The subjects then performed two-legged glycogen-depleting exercise and consumed a carbohydrate-free meal thereafter to keep muscle glycogen concentration low. The next morning, subjects performed dynamic knee extensions with both thighs simultaneously at 60, 80, and until exhaustion at 100% of each thigh's peak workload. Glucose uptake was similar in both thighs during exercise at 60% of thigh peak workload. At the end of 80 and at 100% of peak workload, glucose uptake was on average 33 and 22% higher, respectively, in trained compared with untrained muscle (P < 0.05). Training increased the muscle content of GLUT-4 by 66% (P < 0.05). At exhaustion, glucose extraction correlated significantly (r = 0.61) with total muscle GLUT-4 protein. Thus, when working at a high load with low glycogen concentrations, muscle glucose uptake is significantly higher in trained than in untrained muscle. This may be due to the higher GLUT-4 protein concentration in trained muscle.
引用
收藏
页码:1151 / 1158
页数:8
相关论文
共 41 条
[1]   Comparison of traditional measurements with macroglycogen and proglycogen analysis of muscle glycogen [J].
Adamo, KB ;
Graham, TE .
JOURNAL OF APPLIED PHYSIOLOGY, 1998, 84 (03) :908-913
[2]   MAXIMAL PERFUSION OF SKELETAL-MUSCLE IN MAN [J].
ANDERSEN, P ;
SALTIN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1985, 366 (SEP) :233-249
[3]   Muscle net glucose uptake and glucose kinetics after endurance training in men [J].
Bergman, BC ;
Butterfield, GE ;
Wolfel, EE ;
Lopaschuk, GD ;
Casazza, GA ;
Horning, MA ;
Brooks, GA .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 277 (01) :E81-E92
[4]   PSYCHOPHYSICAL BASES OF PERCEIVED EXERTION [J].
BORG, GAV .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 1982, 14 (05) :377-381
[5]   GLUCOSE KINETICS DURING HIGH-INTENSITY EXERCISE IN ENDURANCE-TRAINED AND UNTRAINED HUMANS [J].
COGGAN, AR ;
RAGUSO, CA ;
WILLIAMS, BD ;
SIDOSSIS, LS ;
GASTALDELLI, A .
JOURNAL OF APPLIED PHYSIOLOGY, 1995, 78 (03) :1203-1207
[6]   REVERSAL OF FATIGUE DURING PROLONGED EXERCISE BY CARBOHYDRATE INFUSION OR INGESTION [J].
COGGAN, AR ;
COYLE, EF .
JOURNAL OF APPLIED PHYSIOLOGY, 1987, 63 (06) :2388-2395
[7]   ENDURANCE TRAINING DECREASES PLASMA-GLUCOSE TURNOVER AND OXIDATION DURING MODERATE-INTENSITY EXERCISE IN MEN [J].
COGGAN, AR ;
KOHRT, WM ;
SPINA, RJ ;
BIER, DM ;
HOLLOSZY, JO .
JOURNAL OF APPLIED PHYSIOLOGY, 1990, 68 (03) :990-996
[8]   MUSCLE GLYCOGEN UTILIZATION DURING PROLONGED STRENUOUS EXERCISE WHEN FED CARBOHYDRATE [J].
COYLE, EF ;
COGGAN, AR ;
HEMMERT, MK ;
IVY, JL .
JOURNAL OF APPLIED PHYSIOLOGY, 1986, 61 (01) :165-172
[9]   GLUT-4 AND INSULIN-RECEPTOR BINDING AND KINASE-ACTIVITY IN TRAINED HUMAN MUSCLE [J].
DELA, F ;
HANDBERG, A ;
MIKINES, KJ ;
VINTEN, J ;
GALBO, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 469 :615-624
[10]   Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content [J].
Derave, W ;
Lund, S ;
Holman, GD ;
Wojtaszewski, J ;
Pedersen, O ;
Richter, EA .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 277 (06) :E1103-E1110