Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions

被引:345
作者
Kang, Dongchon
Kim, Sang Ho
Hamasaki, Naotaka
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept Clin Chem & Lab Med, Higashi Ku, Fukuoka 8128582, Japan
[2] Daegu Univ, Dept Biol Educ, Kyungsan, South Korea
关键词
D O I
10.1016/j.mito.2006.11.017
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A growing body of evidence suggests that mammalian mitochondrial DNA takes on higher structure called nucleoid or mitochromosome corresponding to that of nuclear DNA. Mitochondrial transcription factor A (TFAM), which was cloned as a transcription factor for mitochondrial DNA, has known to be essential for the maintenance of mitochondrial DNA. Human TFAM has an ability to bind to DNA in a sequence-independent manner and is abundant enough to cover whole region of mitochondrial DNA, owing to which TFAM stabilizes mitochondrial DNA through formation of nucleoid and regulates (or titrates) the amount of mitochondrial DNA. Overexpression of human TFAM in mice increases the amount of mitochondrial DNA and dramatically ameliorates the cardiac dysfunctions caused by myocardial infarction. The maintenance of integrity of mitochondrial DNA is important for keeping proper cellular functions both under physiological and pathological conditions. TFAM may play a crucial role in maintaining mitochondrial DNA as a main component of the nucleoid. (c) 2006 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 41 条
[1]   Human mitochondrial DNA is packaged with TFAM [J].
Alam, TI ;
Kanki, T ;
Muta, T ;
Ukaji, K ;
Abe, Y ;
Nakayama, H ;
Takio, K ;
Hamasaki, N ;
Kang, DC .
NUCLEIC ACIDS RESEARCH, 2003, 31 (06) :1640-1645
[2]   ASSOCIATION OF A PROTEIN-STRUCTURE OF PROBABLE MEMBRANE DERIVATION WITH HELA-CELL MITOCHONDRIAL-DNA NEAR ITS ORIGIN OF REPLICATION [J].
ALBRING, M ;
GRIFFITH, J ;
ATTARDI, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (04) :1348-1352
[3]   Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy [J].
Arbustini, E ;
Diegoli, M ;
Fasani, R ;
Grasso, M ;
Morbini, P ;
Banchieri, N ;
Bellini, O ;
Dal Bello, B ;
Pilotto, A ;
Magrini, G ;
Campana, C ;
Fortina, P ;
Gavazzi, A ;
Narula, J ;
Viganò, M .
AMERICAN JOURNAL OF PATHOLOGY, 1998, 153 (05) :1501-1510
[4]   ASSOCIATION OF MITOCHONDRIAL-DNA DAMAGE WITH AGING AND CORONARY ATHEROSCLEROTIC HEART-DISEASE [J].
CORRALDEBRINSKI, M ;
SHOFFNER, JM ;
LOTT, MT ;
WALLACE, DC .
MUTATION RESEARCH, 1992, 275 (3-6) :169-180
[5]   INSITU PHOTOCHEMICAL CROSSLINKING OF HELA-CELL MITOCHONDRIAL-DNA BY A PSORALEN DERIVATIVE REVEALS A PROTECTED REGION NEAR THE ORIGIN OF REPLICATION [J].
DEFRANCESCO, L ;
ATTARDI, G .
NUCLEIC ACIDS RESEARCH, 1981, 9 (22) :6017-6030
[6]   Mitochondrial transcription factor A regulates mtDNA copy number in mammals [J].
Ekstrand, MI ;
Falkenberg, M ;
Rantanen, A ;
Park, CB ;
Gaspari, M ;
Hultenby, K ;
Rustin, P ;
Gustafsson, CM ;
Larsson, NG .
HUMAN MOLECULAR GENETICS, 2004, 13 (09) :935-944
[7]   Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA [J].
Falkenberg, M ;
Gaspari, M ;
Rantanen, A ;
Trifunovic, A ;
Larsson, NG ;
Gustafsson, CM .
NATURE GENETICS, 2002, 31 (03) :289-294
[8]   PURIFICATION AND CHARACTERIZATION OF HUMAN MITOCHONDRIAL TRANSCRIPTION FACTOR-I [J].
FISHER, RP ;
CLAYTON, DA .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (08) :3496-3509
[9]   Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles [J].
Garnier, A ;
Fortin, D ;
Deloménie, C ;
Momken, I ;
Veksler, V ;
Ventura-Clapier, R .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 551 (02) :491-501
[10]   Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction [J].
Ide, T ;
Tsutsui, H ;
Hayashidani, S ;
Kang, DC ;
Suematsu, N ;
Nakamura, K ;
Utsumi, H ;
Hamasaki, N ;
Takeshita, A .
CIRCULATION RESEARCH, 2001, 88 (05) :529-535