Max cut for random graphs with a planted partition

被引:22
作者
Bollobás, B
Scott, AD
机构
[1] Trinity Coll, Cambridge CB2 1TQ, England
[2] Univ Memphis, Dept Mat Sci, Memphis, TN 38152 USA
[3] UCL, Dept Math, London WC1E 6BT, England
关键词
D O I
10.1017/S0963548304006303
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give an algorithm that, with high probability, recovers a planted k-partition in a random graph, where edges within vertex classes occur with probability p and edges between vertex classes occur with probability r greater than or equal to p + croot(plogn/n). The algorithm can handle vertex classes of different sizes and, for fixed k, runs in linear time. We also give variants of the algorithm for partitioning matrices and hypergraphs.
引用
收藏
页码:451 / 474
页数:24
相关论文
共 29 条
[1]  
Alon N., 2000, PROBABILISTIC METHOD
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]  
[Anonymous], 1998, P 9 ANN ACM SIAM S D
[4]  
ARORA S, 1995, 27 STOC, P284
[5]   Clustering gene expression patterns [J].
Ben-Dor, A ;
Shamir, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) :281-297
[6]  
BOPPANA RB, 1987, IEEE S FDN COMP SCI, P280
[7]   GRAPH BISECTION ALGORITHMS WITH GOOD AVERAGE CASE BEHAVIOR [J].
BUI, TN ;
CHAUDHURI, S ;
LEIGHTON, FT ;
SIPSER, M .
COMBINATORICA, 1987, 7 (02) :171-191
[8]  
Carson T, 2001, SIAM PROC S, P903
[9]  
Condon A, 2001, RANDOM STRUCT ALGOR, V18, P116, DOI 10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO
[10]  
2-2