Synthesis and characterization of polypyrrole nanofibers with different dopants

被引:65
作者
Goel, Shubhra [1 ]
Mazumdar, Nasreen A. [1 ]
Gupta, Alka [2 ]
机构
[1] Jamia Millia Islamia, Dept Chem, New Delhi 110025, India
[2] Univ Delhi, Dyal Singh Coll, Dept Chem, New Delhi 110003, India
关键词
polypyrrole nanofibers; optical properties; electron microscopy; surface morphology; infrared spectroscopy; CONDUCTING POLYPYRROLE; POLYANILINE NANOSTRUCTURES; ELECTRICAL-PROPERTIES; NANOWIRE NETWORKS; BLOCK-COPOLYMER; POLYMERIZATION; FABRICATION; FILMS; ACID; NANOMATERIALS;
D O I
10.1002/pat.1417
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nanostructures of polypyrrole (PPy) were synthesized in the presence of different dopants including hydrochloric acid (HCl), ferric chloride (FeCl(3)), p-toluene sulfonic acid (p-TSA), camphor sulfonic acid (CSA), and polystyrene sulfonic acid (PSSA), using a simple interfacial oxidative polymerization method. The method is a reliable non-template approach with relatively simple instrumentation, ease of synthesis, and economic viability for synthesizing PPy nanostructures. Morphology of synthesized PPy structures was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicate the formation of one-dimensional (1D) nanofibers with average diameter of 75-180 nm. Energy dispersive spectrum (EDS) of the PPy nanofibers indicates the attachment of the dopants to the PPy backbone; the fact is further confirmed by the Fourier transform infrared (FTIR) spectra of PPy nanostructures. Thermal stabilities of the nanostructures explored using thermal gravimetric analysis (TGA) follow the order PPy-p-TSA > CSA > HCl > FeCl(3) > PSSA. It is noticed that the electrical conductivity (EC) of PPy nanostructures depends upon the nature of dopant (PPy-p-TSA > CSA > HCl > FeCl(3) > PSSA), PPy-p-TSA nanofibers showing the highest EC of 6 x 10(-2) Scm(-1). Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 43 条
[1]   Electrochemical interrogation and sensor applications of nanostructured polypyrroles [J].
Akinyeye, Richard ;
Michira, Immaculate ;
Sekota, Mantoa ;
Al-Ahmed, Amir ;
Baker, Priscilla ;
Iwuoha, Emmanuel .
ELECTROANALYSIS, 2006, 18 (24) :2441-2450
[2]  
Bozkurt A, 2005, TURK J CHEM, V29, P117
[3]   INFLUENCE OF DOPANT ION AND SYNTHESIS VARIABLES ON MECHANICAL-PROPERTIES OF POLYPYRROLE FILMS [J].
BUCKLEY, LJ ;
ROYLANCE, DK ;
WNEK, GE .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1987, 25 (10) :2179-2188
[4]  
CHALMERS JM, 2002, HDB VIBRATIONAL SPEC, P1783
[5]  
CHAMPAGNE SD, 1999, SYNTHETIC MET, V101, P20
[6]   Ordered conducting polypyrrole doped with sulfopropyl ether of β-cyclodextrin [J].
Chen, W ;
Wan, XB ;
Xu, N ;
Xue, G .
MACROMOLECULES, 2003, 36 (02) :276-278
[7]   Optical studies of polyaniline nanostructures [J].
Goel, S. ;
Gupta, A. ;
Singh, K. P. ;
Mehrotra, R. ;
Kandpal, H. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 443 (1-2) :71-76
[8]  
Goel S, 2006, Int. J. Appl. Chem., V2, P157
[9]   Nanoscale polypyrrole patterns using block copolymer surface micelles as templates [J].
Goren, M ;
Lennox, RB .
NANO LETTERS, 2001, 1 (12) :735-738
[10]  
Gupta A, 2006, INDIAN J CHEM A, V45, P1831