Affine transformations and bi-anisotropic media in differential-form approach

被引:4
作者
Lindell, IV [1 ]
机构
[1] Helsinki Univ Technol, Electromagnet Lab, Espoo 02015, Finland
关键词
D O I
10.1163/1569393042955315
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A class of bi-anisotropic electromagnetic media, form invariant in all spatial affine transformations, is defined using differential-form formalism and called the class of AB media. The four-dimensional medium dyadic defines an eigenvalue problem with two eigenvalues which define two eigenfields. It is shown that any electromagnetic two-form field can be expressed as a sum of eigenfields which appear uncoupled in a homogeneous AB medium. For each of the eigenfields the original bi-anisotropic AB medium can be replaced by a simpler anisotropic effective medium.
引用
收藏
页码:1259 / 1273
页数:15
相关论文
共 11 条
[1]  
[Anonymous], 1995, METHODS ELECTROMAGNE
[2]  
[Anonymous], 1960, VECTOR ANAL
[3]   COVARIANT DESCRIPTIONS OF BIANISOTROPIC MEDIA [J].
CHENG, DK ;
KONG, JA .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1968, 56 (03) :248-&
[4]   ELECTROMAGNETICS AND DIFFERENTIAL FORMS [J].
DESCHAMPS, GA .
PROCEEDINGS OF THE IEEE, 1981, 69 (06) :676-696
[5]  
FLANDERS H, 1963, DIFFERENTIAL FORMS
[6]  
Lindell I.V., 2004, Differential Forms in Electromagnetics, DOI DOI 10.1002/0471723096
[7]   Wave equations for Bi-anisotropic media in differential forms [J].
Lindell, IV ;
Wallén, KH .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2002, 16 (11) :1615-1635
[8]  
LINDELL IV, 2003, 416 HELS U TECH EL L
[9]  
LINDELL IV, 2003, 421 HELS U TECH EL L
[10]  
Olyslager F, 1998, MICROW OPT TECHN LET, V17, P45, DOI 10.1002/(SICI)1098-2760(199801)17:1<45::AID-MOP11>3.0.CO