A novel mechanism for mitogen-activated protein kinase localization

被引:15
作者
Bind, E [1 ]
Kleyner, Y [1 ]
Skowronska-Krawczyk, D [1 ]
Bien, E [1 ]
Dynlacht, BD [1 ]
Sánchez, I [1 ]
机构
[1] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
关键词
D O I
10.1091/mbc.E04-03-0234
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.
引用
收藏
页码:4457 / 4466
页数:10
相关论文
共 24 条
[1]   Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis [J].
Acharya, U ;
Mallabiabarrena, A ;
Acharya, JK ;
Malhotra, V .
CELL, 1998, 92 (02) :183-192
[2]   ERKS - A FAMILY OF PROTEIN-SERINE THREONINE KINASES THAT ARE ACTIVATED AND TYROSINE PHOSPHORYLATED IN RESPONSE TO INSULIN AND NGF [J].
BOULTON, TG ;
NYE, SH ;
ROBBINS, DJ ;
IP, NY ;
RADZIEJEWSKA, E ;
MORGENBESSER, SD ;
DEPINHO, RA ;
PANAYOTATOS, N ;
COBB, MH ;
YANCOPOULOS, GD .
CELL, 1991, 65 (04) :663-675
[3]   ERK3 is a constitutively nuclear protein kinase [J].
Cheng, M ;
Boulton, TG ;
Cobb, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (15) :8951-8958
[4]   Cell-cycle-specific Golgi fragmentation: how and why? Opinion [J].
Colanzi, A ;
Suetterlin, C ;
Malhotra, V .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (04) :462-467
[5]   Golgi dispersal during microtubule disruption: Regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites [J].
Cole, NB ;
Sciaky, N ;
Marotta, A ;
Song, J ;
LippincottSchwartz, J .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (04) :631-650
[6]   Rapid turnover of extracellular signal-regulated kinase 3 by the ubiquitin-proteasome pathway defines a novel paradigm of mitogen-activated protein kinase regulation during cellular differentiation [J].
Coulombe, P ;
Rodier, G ;
Pelletier, S ;
Pellerin, J ;
Meloche, S .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (13) :4542-4558
[7]   Mammalian caspases: Structure, activation, substrates, and functions during apoptosis [J].
Earnshaw, WC ;
Martins, LM ;
Kaufmann, SH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :383-424
[8]   P42 MITOGEN-ACTIVATED PROTEIN-KINASE IN BRAIN - PROMINENT LOCALIZATION IN NEURONAL CELL-BODIES AND DENDRITES [J].
FIORE, RS ;
BAYER, VE ;
PELECH, SL ;
POSADA, J ;
COOPER, JA ;
BARABAN, JM .
NEUROSCIENCE, 1993, 55 (02) :463-472
[9]   Many cuts to ruin:: a comprehensive update of caspase substrates [J].
Fischer, U ;
Jänicke, RU ;
Schulze-Osthoff, K .
CELL DEATH AND DIFFERENTIATION, 2003, 10 (01) :76-100
[10]   Dynamics of transitional endoplasmic reticulum sites in vertebrate cells [J].
Hammond, AT ;
Glick, BS .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (09) :3013-3030