Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP)

被引:77
作者
Hutchison, JB
Haraldsson, KT
Good, BT
Sebra, RP
Luo, N
Anseth, KS
Bowman, CN
机构
[1] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
[3] Univ Colorado, Hlth Sci Ctr, Dept Restorat Dent, Biomat Res Ctr, Denver, CO 80262 USA
关键词
D O I
10.1039/b405985a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidic devices are commonly fabricated in silicon or glass using micromachining technology or elastomers using soft lithography methods; however, invariable bulk material properties, limited surface modification methods and difficulty in fabricating high aspect ratio devices prevent these materials from being utilized in numerous applications and/or lead to high fabrication costs. Contact Liquid Photolithographic Polymerization (CLiPP) was developed as an alternative microfabrication approach that uniquely exploits living radical photopolymerization chemistry to facilitate surface modification of device components, fabrication of high aspect ratio structures from many different materials with numerous covalently-adhered layers and facile construction of three-dimensional devices. This contribution describes CLiPP and demonstrates unique advantages of this new technology for microfabrication of polymeric microdevices. Specifically, the procedure for fabricating devices with CLiPP is presented, the living radical photopolymerization chemistry which enables this technology is described, and examples of devices made using CLiPP are shown.
引用
收藏
页码:658 / 662
页数:5
相关论文
共 58 条
[1]  
Becker H, 2000, ELECTROPHORESIS, V21, P12, DOI 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.3.CO
[2]  
2-Z
[3]   Polymer microfluidic devices [J].
Becker, H ;
Locascio, LE .
TALANTA, 2002, 56 (02) :267-287
[4]   Hot embossing as a method for the fabrication of polymer high aspect ratio structures [J].
Becker, H ;
Heim, U .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 83 (1-3) :130-135
[5]   Microfluidic tectonics: A comprehensive construction platform for microfluidic systems [J].
Beebe, DJ ;
Moore, JS ;
Yu, Q ;
Liu, RH ;
Kraft, ML ;
Jo, BH ;
Devadoss, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13488-13493
[6]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[7]   Physics and applications of microfluidics in biology [J].
Beebe, DJ ;
Mensing, GA ;
Walker, GM .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :261-286
[8]   Biochemical analysis with microfluidic systems [J].
Bilitewski, U ;
Genrich, M ;
Kadow, S ;
Mersal, G .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 377 (03) :556-569
[9]   Plastic fantastic? [J].
de Mello, A .
LAB ON A CHIP, 2002, 2 (02) :31N-36N
[10]  
Decker C, 1998, POLYM INT, V45, P133, DOI 10.1002/(SICI)1097-0126(199802)45:2<133::AID-PI969>3.0.CO