mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E

被引:140
作者
Schwartz, DC
Parker, R [1 ]
机构
[1] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
[2] Univ Arizona, Howard Hughes Med Inst, Tucson, AZ 85721 USA
关键词
D O I
10.1128/MCB.20.21.7933-7942.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A major pathway of eukaryotic mRNA turnover occurs by deadenylation-dependent decapping that exposes the transcript to 5'-->3' exonucleolytic degradation. A critical step in this pathway is decapping, since removal of the cap structure permits 5'-->3' exonucleolytic digestion. Based on alterations in mRNA decay rate from strains deficient in translation initiation, it has been proposed that the decapping rate is modulated by a competition between the cytoplasmic cap binding complex, which promotes translation initiation, and the decapping enzyme, Dcp1p. In order to test this model directly, we examined the functional interaction of Dcp1p and the cap binding protein, eukaryotic translation initiation factor 4E (eIF4E), in vitro. These experiments indicated that eIF4E is an inhibitor of Dcp1p in vitro due to its ability to bind the 5' cap structure. In addition, we demonstrate that in vivo a temperature-sensitive allele of eIF4E (cdc33-42) suppressed the decapping defect of a partial loss-of-function allele of DCP1. These results argue that dissociation of eIF4E from the cap structure is required before decapping. Interestingly, the temperature-sensitive allele of eIF4E does not suppress the decapping defect seen in strains lacking the decapping activators, Lsm1p and Pat1p. This indicates that these activators of decapping affect a step in mRNA turnover distinct from the competition between Dcp1 and eIF4E.
引用
收藏
页码:7933 / 7942
页数:10
相关论文
共 49 条
[1]   AN ACCURACY CENTER IN THE RIBOSOME CONSERVED OVER 2 BILLION YEARS [J].
ALKSNE, LE ;
ANTHONY, RA ;
LIEBMAN, SW ;
WARNER, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (20) :9538-9541
[2]   TRANSLATION IN SACCHAROMYCES-CEREVISIAE - INITIATION-FACTOR 4E-DEPENDENT CELL-FREE SYSTEM [J].
ALTMANN, M ;
SONENBERG, N ;
TRACHSEL, H .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (10) :4467-4472
[3]   5'-TERMINAL CAP STRUCTURE IN EUKARYOTIC MESSENGER RIBONUCLEIC-ACIDS [J].
BANERJEE, AK .
MICROBIOLOGICAL REVIEWS, 1980, 44 (02) :175-205
[4]   A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates [J].
Bashkirov, VI ;
Scherthan, H ;
Solinger, JA ;
Buerstedde, JM ;
Heyer, WD .
JOURNAL OF CELL BIOLOGY, 1997, 136 (04) :761-773
[5]   DEGRADATION OF MESSENGER-RNA IN EUKARYOTES [J].
BEELMAN, CA ;
PARKER, R .
CELL, 1995, 81 (02) :179-183
[6]   An essential component of the decapping enzyme required for normal rates of mRNA turnover [J].
Beelman, CA ;
Stevens, A ;
Caponigro, G ;
LaGrandeur, TE ;
Hatfield, L ;
Fortner, DM ;
Parker, R .
NATURE, 1996, 382 (6592) :642-646
[7]   Capped mRNA degradation intermediates accumulate in the yeast spb8-2 mutant [J].
Boeck, R ;
Lapeyre, B ;
Brown, CE ;
Sachs, AB .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (09) :5062-5072
[8]   The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p [J].
Bonnerot, C ;
Boeck, R ;
Lapeyre, B .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (16) :5939-5946
[9]   A Sm-like protein complex that participates in mRNA degradation [J].
Bouveret, E ;
Rigaut, G ;
Shevchenko, A ;
Wilm, M ;
Séraphin, B .
EMBO JOURNAL, 2000, 19 (07) :1661-1671
[10]   A SMALL SEGMENT OF THE MAT-ALPHA-1 TRANSCRIPT PROMOTES MESSENGER-RNA DECAY IN SACCHAROMYCES-CEREVISIAE - A STIMULATORY ROLE FOR RARE CODONS [J].
CAPONIGRO, G ;
MUHLRAD, D ;
PARKER, R .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) :5141-5148