Biomolecular screening with encoded porous-silicon photonic crystals

被引:351
作者
Cunin, F
Schmedake, TA
Link, JR
Li, YY
Koh, J
Bhatia, SN
Sailor, MJ
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, Dept 0358, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, Dep 0412, La Jolla, CA 92093 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1038/nmat702
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strategies to encode or label small particles or beads for use in high-throughput screening and bioassay applications' focus on either spatially differentiated, on-chip arrays2-4 or random distributions of encoded beads5,6. Attempts to encode large numbers of polymeric, metallic or glass beads in random arrays or in fluid suspension have used a variety of entities to provide coded elements (bits) - fluorescent molecules, molecules with specific vibrational signatures7,8, quantum dots9, or discrete metallic layers10. Here we report a method for optically encoding micrometre-sized nanostructured particles of porous silicon. We generate multilayered porous films in crystalline silicon using a periodic electrochemical etch. This results in photonic crystals with well-resolved and narrow optical reflectivity features, whose wavelengths are determined by the etching parameters11. Millions of possible codes can be prepared this way. Micrometre-sized particles are then produced by ultrasonic fracture12, mechanical grinding or by lithographic means. A simple antibody-based bioassay using fluorescently tagged proteins demonstrates the encoding strategy in biologically relevant media.
引用
收藏
页码:39 / 41
页数:3
相关论文
共 33 条
  • [1] Dielectric filters made of PS: Advanced performance by oxidation and new layer structures
    Berger, MG
    ArensFischer, R
    Thonissen, M
    Kruger, M
    Billat, S
    Luth, H
    Hilbrich, S
    Theiss, W
    Grosse, P
    [J]. THIN SOLID FILMS, 1997, 297 (1-2) : 237 - 240
  • [2] Semiconductor nanocrystals as fluorescent biological labels
    Bruchez, M
    Moronne, M
    Gin, P
    Weiss, S
    Alivisatos, AP
    [J]. SCIENCE, 1998, 281 (5385) : 2013 - 2016
  • [3] Canham LT, 2000, PHYS STATUS SOLIDI A, V182, P521, DOI 10.1002/1521-396X(200011)182:1<521::AID-PSSA521>3.0.CO
  • [4] 2-7
  • [5] Temperature dependence of the photoluminescence of all-porous-silicon optical microcavities
    Cazzanelli, M
    Vinegoni, C
    Pavesi, L
    [J]. JOURNAL OF APPLIED PHYSICS, 1999, 85 (03) : 1760 - 1764
  • [6] Identification of gram negative bacteria using nanoscale silicon microcavities
    Chan, S
    Horner, SR
    Fauchet, PM
    Miller, BL
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (47) : 11797 - 11798
  • [7] Quantum dot bioconjugates for ultrasensitive nonisotopic detection
    Chan, WCW
    Nie, SM
    [J]. SCIENCE, 1998, 281 (5385) : 2016 - 2018
  • [8] Accessing genetic information with high-density DNA arrays
    Chee, M
    Yang, R
    Hubbell, E
    Berno, A
    Huang, XC
    Stern, D
    Winkler, J
    Lockhart, DJ
    Morris, MS
    Fodor, SPA
    [J]. SCIENCE, 1996, 274 (5287) : 610 - 614
  • [9] A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface
    Dancil, KPS
    Greiner, DP
    Sailor, MJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (34) : 7925 - 7930
  • [10] Barcoded resins: A new concept for polymer-supported combinatorial library self-deconvolution
    Fenniri, H
    Ding, LH
    Ribbe, AE
    Zyrianov, Y
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (33) : 8151 - 8152