Bayesian and classical approaches to instrumental variable regression

被引:72
作者
Kleibergen, F
Zivot, E
机构
[1] Univ Amsterdam, Fac Econ & Econometr, Dept Quantitat Econ, NL-1018 WB Amsterdam, Netherlands
[2] Univ Washington, Dept Econ, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
diffuse prior; instrumental variables; posterior distributions; reduced rank; weak instruments;
D O I
10.1016/S0304-4076(02)00219-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
We establish relationships between certain Bayesian and classical approaches to instrumental variable regression. We determine the form of priors that lead to posteriors for structural parameters that have similar properties as classical 2SLS and LIML and in doing so provide some new insight, especially in the context of weak instruments, to the small sample behavior of Bayesian and classical procedures. Using a reduced rank restriction on a multivariate linear model, we determine the priors that give rise to posteriors that are identical in functional form to the sampling densities of the classical 2SLS and LIML estimators. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:29 / 72
页数:44
相关论文
共 65 条
[1]  
Anderson T. W., 1986, ECONOMET THEOR, V2, P1, DOI DOI 10.1017/S026646660001135X
[2]   EVALUATION OF THE DISTRIBUTION FUNCTION OF THE 2-STAGE LEAST-SQUARES ESTIMATE [J].
ANDERSON, TW ;
SAWA, T .
ECONOMETRICA, 1979, 47 (01) :163-182
[3]   THE ASYMPTOTIC PROPERTIES OF ESTIMATES OF THE PARAMETERS OF A SINGLE EQUATION IN A COMPLETE SYSTEM OF STOCHASTIC EQUATIONS [J].
ANDERSON, TW ;
RUBIN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (04) :570-582
[4]   ASYMPTOTIC EXPANSIONS OF DISTRIBUTIONS OF ESTIMATES IN SIMULTANEOUS EQUATIONS FOR ALTERNATIVE PARAMETER SEQUENCES [J].
ANDERSON, TW .
ECONOMETRICA, 1977, 45 (02) :509-518
[5]  
ANDERSON TW, 1982, ADV ECONOMETRICS, P109
[6]  
[Anonymous], 1967, Theory of Probability
[8]  
BAUWENS L, 1989, EC DECISION MAKING G
[9]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[10]  
Bowden RJ., 1984, INSTRUMENTAL VARIABL