Tomato linalool synthase is induced in trichomes by jasmonic acid

被引:206
作者
van Schie, Chris C. N. [1 ]
Haring, Michel A. [1 ]
Schuurink, Robert C. [1 ]
机构
[1] Univ Amsterdam, Dept Plant Physiol, Swammerdam Inst Life Sci, NL-1098 SM Amsterdam, Netherlands
关键词
tomato; jasmonic acid; trichomes; linalool; terpenes; defence;
D O I
10.1007/s11103-007-9149-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tomato (Lycopersicon esculentum) plants emit a blend of volatile organic compounds, which mainly consists of terpenes. Upon herbivory or wounding, the emission of several terpenes increases. We have identified and characterized the first two tomato monoterpene synthases, LeMTS1 and LeMTS2. Although these proteins were highly homologous, recombinant LeMTS1 protein produced (R)-linalool from geranyl diphosphate (GPP) and (E)-nerolidol from farnesyl diphosphate (FPP), while recombinant LeMTS2 produced beta-phellandrene, beta-myrcene, and sabinene from GPP. In addition, these genes were expressed in different tissues: LeMTS1 was expressed in flowers, young leaves, stems, and petioles, while LeMTS2 was strongest expressed in stems and roots. LeMTS1 expression in leaves was induced by spider mite-infestation, wounding and jasmonic acid (JA)-treatment, while LeMTS2 did not respond to these stimuli. The expression of LeMTS1 in stems and petioles was predominantly detected in trichomes and could be induced by JA. Because JA treatment strongly induced emission of linalool and overexpression of LeMTS1 in tomato resulted in increased production of linalool, we propose that LeMTS1 is a genuine linalool synthase. Our results underline the importance of trichomes in JA-induced terpene emission in tomato.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 83 条
[1]  
Adams R. P., 2001, IDENTIFICATION ESSEN
[2]   Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species [J].
Aharoni, A ;
Giri, AP ;
Verstappen, FWA ;
Bertea, CM ;
Sevenier, R ;
Sun, ZK ;
Jongsma, MA ;
Schwab, W ;
Bouwmeester, HJ .
PLANT CELL, 2004, 16 (11) :3110-3131
[3]   Terpenoid metabolism in wild-type and transgenic Arabidopsis plants [J].
Aharoni, A ;
Giri, AP ;
Deuerlein, S ;
Griepink, F ;
de Kogel, WJ ;
Verstappen, FWA ;
Verhoeven, HA ;
Jongsma, MA ;
Schwab, W ;
Bouwmeester, HJ .
PLANT CELL, 2003, 15 (12) :2866-2884
[4]   Metabolic engineering of terpenoid biosynthesis in plants [J].
Aharoni A. ;
Jongsma M.A. ;
Kim T.-Y. ;
Ri M.-B. ;
Giri A.P. ;
Verstappen F.W.A. ;
Schwab W. ;
Bouwmeester H.J. .
Phytochemistry Reviews, 2006, 5 (1) :49-58
[5]   Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato [J].
Ament, K ;
Kant, MR ;
Sabelis, MW ;
Haring, MA ;
Schuurink, RC .
PLANT PHYSIOLOGY, 2004, 135 (04) :2025-2037
[6]  
[Anonymous], 2001, Anal Biochem
[7]   Herbivore-induced defense response in a model legume.: Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus [J].
Arimura, G ;
Ozawa, R ;
Kugimiya, S ;
Takabayashi, J ;
Bohlmann, J .
PLANT PHYSIOLOGY, 2004, 135 (04) :1976-1983
[8]   Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa x deltoides):: cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1 [J].
Arimura, G ;
Huber, DPW ;
Bohlmann, J .
PLANT JOURNAL, 2004, 37 (04) :603-616
[9]   Isoprenoid biosynthesis in Artemisia annua:: Cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library [J].
Bertea, Cinzia M. ;
Voster, Alessandra ;
Verstappen, Francel W. A. ;
Maffei, Massimo ;
Beekwilder, Jules ;
Bouwmeester, Harro J. .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2006, 448 (1-2) :3-12
[10]   Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol [J].
Besumbes, O ;
Sauret-Güeto, S ;
Phillips, MA ;
Imperial, S ;
Rodríguez-Concepción, M ;
Boronat, A .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 88 (02) :168-175