The goal standard of contrast echocardiography is the absolute measure of myocardial perfusion using a contrast agent. Actually, several contrast agents are developed. All these agents show left ventricular opacification after intravenous injection. However, none of these agents shows an acceptable enhancement of the myocardium yet using conventional imaging techniques. The explanation of this phenomenon should be easy by measuring the acoustic characteristics of the contrast agent and then making a comparison of these characteristics with those of the myocardium. In this study we present definitions of standard acoustic parameters of ultrasound contrast agent, the backscatter coefficient B-s and the scattering-to-attenuation ratio STAR. Afterwards, considering an intravenous injection of the contrast agent, and taking into account the effects of lung filtering and cardiac pressure, the standard properties of contrast agents are determined in different sites: right ventricle (before lung passage), left ventricle (after lung passage and taking into account the pressure effect) and in the coronary system. Calculations showed that the acoustic properties are considerably influenced by these two effects: lung filtering and cardiac pressure. Comparison of these properties with the tissue properties (myocardium) is then performed. This determines the contribution of the contrast agent to the enhancement of the tissue visualization. The simulations are performed on Albunex microspheres. The results reveal that the difference between scattering of the myocardium and scattering of intravenously injected Albunex is too slight to be visible on an echographic image. (C) 1998 Elsevier Science B.V.