Statistical information approaches for the modelling of the epileptic brain

被引:3
作者
Pardalos, PM
Sackellares, JC
Iasemidis, LD
Yatsenko, V
Yang, MCK
Shiau, DS
Chaovalitwongse, W
机构
[1] Univ Florida, Dept Ind & Syst Engn, Ctr Appl Optimizat, Gainesville, FL 32611 USA
[2] Univ Florida, Biomed Engn Program, Gainesville, FL 32610 USA
[3] Univ Florida, Dept Neurosci, Gainesville, FL 32610 USA
[4] Univ Florida, Dept Neurol, Gainesville, FL 32610 USA
[5] Univ Florida, McKnight Brain Inst, Gainesville, FL 32610 USA
[6] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[7] Malcolm Randall VA Med Ctr, Gainesville, FL 32611 USA
[8] Arizona State Univ, Dept Biomed Engn, Tempe, AZ 85287 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
epilepsy; statistical information; optimization; reconstruction; detection; similarity; robust estimation;
D O I
10.1016/S0167-9473(02)00152-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
First, the theory of random process is linked with the statistical description of epileptic human brain process. A statistical information approach to the adaptive analysis of the electroencephalogram (EEG) is proposed. Then, the problem of time window recognition of the global stochastic model based upon Bayesian estimation and the use of global optimization for restricted experimental data are proposed. A robust algorithm for estimating unknown parameters of stochastic models is considered. The ability of nonlinear time-series analysis to extract features from brain EEG signal for detecting epileptic seizures is evaluated. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:79 / 108
页数:30
相关论文
共 50 条
[1]  
ABRAHAM B, 2000, STAT METHODS FORECAS
[2]  
Amari S., 1985, DIFFERENTIAL GEOMETR
[4]  
[Anonymous], 1995, ANAL OBSERVED CHAOTI
[5]  
[Anonymous], NONLINEAR NONSTATION
[6]  
[Anonymous], BAYESIAN ANAL TIME S
[7]  
ARNOLD V, 1974, DYNAMICAL SYSTEMS MA
[8]   LOW-DIMENSIONAL CHAOS IN AN INSTANCE OF EPILEPSY [J].
BABLOYANTZ, A ;
DESTEXHE, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (10) :3513-3517
[9]  
BOOTHBY W, 1975, INTRO DIFFERENTIAL M
[10]  
BROCKETT R, 1981, STOCHASTIC SYSTEMA M