Analyzing Polyaniline-poly(2-acrylamido-2-methylpropane sulfonic acid) Biocompatibility with 3T3 Fibroblasts

被引:19
作者
Bayer, Carolyn L. [1 ]
Trenchard, Isis J. [1 ]
Peppas, Nicholas A. [1 ,2 ,3 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Ctr Biomat Drug Delivery Bionanotechnol & Mol Rec, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Chem Engn, Ctr Biomat Drug Delivery Bionanotechnol & Mol Rec, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Pharmaceut, Ctr Biomat Drug Delivery Bionanotechnol & Mol Rec, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Conductive polymers; polyaniline; fibroblasts; biocompatibility; ACID-DOPED POLYANILINE; ELECTRICAL-CONDUCTIVITY; CONTROLLED-RELEASE; IN-VIVO; POLYMER; POLYPYRROLE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); NANOPARTICLES; DEGRADATION; COMPOSITE;
D O I
10.1163/156856209X434647
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Conductive polymers can be utilized as unique functional elements in future intelligent biomaterials required for tissue engineering, cell stimulation and drug delivery. Research in these areas could be limited by established methods of conductive polymer synthesis which do not provide an easy route towards large scale processing of these materials. Typically, conductive polymers are highly insoluble in biocompatible solvents, and can be mechanically brittle, making their integration with biomaterials challenging. As an alternative, the use of a water-soluble conductive polymer for integration with biomaterials, a polyaniline template synthesized with poly(2-acrylamido-2-methylpropanesulfonic acid) (PANI-PAAMPSA), is proposed. To address key fundamental questions about the biocompatibility of this conductive polymer, cell cytotoxicity and proliferation assays have been performed on NIH 3T3 fibroblasts cultured on films of PANI-PAAMPSA. It was determined that the cell cultures maintained growth habits similar to those cultured on the control surfaces. Additionally, conductivity of the PANI-PAAMPSA films subsequent to exposure to the cell culture was demonstrated, indicating the materials retain functionality after cell growth. These results indicate that this type of template synthesized PANI could be successfully implemented as a functional, conductive biomaterial. (C) Koninklijke Brill NV, Leiden, 2010
引用
收藏
页码:623 / 634
页数:12
相关论文
共 47 条
[1]   Conducting-polymer nanotubes for controlled drug release [J].
Abidian, MR ;
Kim, DH ;
Martin, DC .
ADVANCED MATERIALS, 2006, 18 (04) :405-+
[2]   Electrochemical and Raman spectroscopic study of polyaniline; influence of the potential on the degradation of polyaniline [J].
Arsov, LD ;
Plieth, W ;
Kossmehl, G .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 1998, 2 (05) :355-361
[3]   Polypyrrole-based conducting polymers and interactions with biological tissues [J].
Ateh, D. D. ;
Navsaria, H. A. ;
Vadgama, P. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2006, 3 (11) :741-752
[4]   5-(3-CARBOXYMETHOXYPHENYL)-2-(4,5-DIMETHYLTHIAZOLYL)-3-(4-SULFOPHENYL)TETRAZOLIUM, INNER SALT (MTS) AND RELATED ANALOGS OF 3-(4,5-DIMETHYLTHIAZOLYL)-2,5-DIPHENYLTETRAZOLIUM BROMIDE (MTT) REDUCING TO PURPLE WATER-SOLUBLE FORMAZANS AS CELL-VIABILITY INDICATORS [J].
BARLTROP, JA ;
OWEN, TC ;
CORY, AH ;
CORY, JG .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1991, 1 (11) :611-&
[5]   Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts [J].
Bidez, PR ;
Li, SX ;
MacDiarmid, AG ;
Venancio, EC ;
Wei, Y ;
Lelkes, PI .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2006, 17 (1-2) :199-212
[6]   Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix [J].
Brabec, CJ ;
Padinger, F ;
Sariciftci, NS ;
Hummelen, JC .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (09) :6866-6872
[7]   The stability of polyaniline in strongly alkaline or acidic aqueous media [J].
Brozova, Libuse ;
Holler, Petr ;
Kovarova, Jana ;
Stejskal, Jaroslav ;
Trchova, Miroslava .
POLYMER DEGRADATION AND STABILITY, 2008, 93 (03) :592-600
[8]  
Collier JH, 2000, J BIOMED MATER RES, V50, P574, DOI 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO
[9]  
2-I
[10]   Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays [J].
Cui, XY ;
Martin, DC .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 89 (1-2) :92-102