Exon silencing by UAGG motifs in response to neuronal excitation

被引:66
作者
An, Ping [1 ]
Grabowski, Paula J. [1 ]
机构
[1] Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA
来源
PLOS BIOLOGY | 2007年 / 5卷 / 02期
关键词
D O I
10.1371/journal.pbio.0050036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the posttranscriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.
引用
收藏
页码:263 / 280
页数:18
相关论文
共 53 条
[1]   Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock [J].
Allemand, E ;
Guil, S ;
Myers, M ;
Moscat, J ;
Cáceres, JF ;
Krainer, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (10) :3605-3610
[2]  
Black D L, 2003, Prog Mol Subcell Biol, V31, P187
[3]   GFAP PROMOTER DIRECTS ASTROCYTE-SPECIFIC EXPRESSION IN TRANSGENIC MICE [J].
BRENNER, M ;
KISSEBERTH, WC ;
SU, Y ;
BESNARD, F ;
MESSING, A .
JOURNAL OF NEUROSCIENCE, 1994, 14 (03) :1030-1037
[4]   Allosteric cascade of spliceosome activation [J].
Brow, DA .
ANNUAL REVIEW OF GENETICS, 2002, 36 :333-360
[5]   SCNM1, a putative RNA splicing factor that modifies disease severity in mice [J].
Buchner, DA ;
Trudeau, M ;
Meisler, MH .
SCIENCE, 2003, 301 (5635) :967-969
[6]   RNA-BINDING SPECIFICITY OF HNRNP A1 - SIGNIFICANCE OF HNRNP A1 HIGH-AFFINITY BINDING-SITES IN PRE-MESSENGER-RNA SPLICING [J].
BURD, CG ;
DREYFUSS, G .
EMBO JOURNAL, 1994, 13 (05) :1197-1204
[7]   Synaptic gain control and homeostasis [J].
Burrone, J ;
Murthy, VN .
CURRENT OPINION IN NEUROBIOLOGY, 2003, 13 (05) :560-567
[8]   Listening to silence and understanding nonsense: Exonic mutations that affect splicing [J].
Cartegni, L ;
Chew, SL ;
Krainer, AR .
NATURE REVIEWS GENETICS, 2002, 3 (04) :285-298
[9]  
Chabot B, 2003, Prog Mol Subcell Biol, V31, P59
[10]   NMDA receptor subunits: diversity, development and disease [J].
Cull-Candy, S ;
Brickley, S ;
Farrant, M .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :327-335