Structural and energetic consequences of mutations in a solvated hydrophobic cavity

被引:24
作者
Adamek, DH [1 ]
Guerrero, L [1 ]
Blaber, M [1 ]
Caspar, DLD [1 ]
机构
[1] Florida State Univ, Inst Mol Biophys, Tallahassee, FL 32306 USA
关键词
protein packing; protein folding; protein hydration; aromatic hydrogen bond; beta trefoil;
D O I
10.1016/j.jmb.2004.11.046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structural and energetic consequences of modifications to the hydrophobic cavity of interleukin 1-beta (IL-1beta) are described. Previous reports demonstrated that the entirely hydrophobic cavity of IL-1beta contains positionally disordered water. To gain a better understanding of the nature of this cavity and the water therein, a number of mutant proteins were constructed by site-directed mutagenesis, designed to result in altered hydrophobicity of the cavity. These mutations involve the replacement of specific phenylalanine residues, which circumscribe the cavity, with tyrosine, tryptophan, leucine and isoleucine. Using differential scanning calorimetry to determine the relative stabilities of the wild-type and mutant proteins, we found all of the mutants to be destabilizing. X-ray crystallography was used to identify the structural consequences of the mutations. No clear correlation between the hydrophobicities of the specific side-chains introduced and the resulting stabilities was found. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 44 条
[1]  
Adamek D, 1998, BIOCALORIMETRY, P235
[2]   ENERGETIC COST AND STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA-]SER AND VAL-]THR SUBSTITUTIONS IN T4 LYSOZYME [J].
BLABER, M ;
LINDSTROM, JD ;
GASSNER, N ;
XU, J ;
DIRK, WH ;
MATTHEWS, BW .
BIOCHEMISTRY, 1993, 32 (42) :11363-11373
[3]   Reversible thermal denaturation of human FGF-1 induced by low concentrations of guanidine hydrochloride [J].
Blaber, SI ;
Culajay, JF ;
Khurana, A ;
Blaber, M .
BIOPHYSICAL JOURNAL, 1999, 77 (01) :470-477
[4]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[5]   CRYSTAL STRUCTURAL-ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE [J].
BUCKLE, AM ;
HENRICK, K ;
FERSHT, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :847-860
[6]   Structural and energetic responses to cavity-creating mutations in hydrophobic cores: Observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities [J].
Buckle, AM ;
Cramer, P ;
Fersht, AR .
BIOCHEMISTRY, 1996, 35 (14) :4298-4305
[7]   HYDROPHOBIC BONDING AND ACCESSIBLE SURFACE-AREA IN PROTEINS [J].
CHOTHIA, C .
NATURE, 1974, 248 (5446) :338-339
[8]   Core and surface mutations affect folding kinetics, stability and cooperativity in IL-1β:: Does alteration in buried water play a role? [J].
Covalt, JC ;
Roy, M ;
Jennings, PA .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (02) :657-669
[9]   STRUCTURAL AND THERMODYNAMIC CONSEQUENCES OF BURYING A CHARGED RESIDUE WITHIN THE HYDROPHOBIC CORE OF T4 LYSOZYME [J].
DAOPIN, S ;
ANDERSON, DE ;
BAASE, WA ;
DAHLQUIST, FW ;
MATTHEWS, BW .
BIOCHEMISTRY, 1991, 30 (49) :11521-11529
[10]   DOMINANT FORCES IN PROTEIN FOLDING [J].
DILL, KA .
BIOCHEMISTRY, 1990, 29 (31) :7133-7155