Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript

被引:122
作者
Wilton, Steve D. [1 ]
Fall, Abbie M. [1 ]
Harding, Penny L. [1 ]
McClorey, Graham [1 ]
Coleman, Catherine [1 ]
Fletcher, Susan [1 ]
机构
[1] Univ Western Australia, Ctr Neuromuscular & Neurol Disorders, Expt Mol Med Grp, QE II Med Ctr, Nedlands, WA 6009, Australia
关键词
D O I
10.1038/sj.mt.6300095
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Protein-truncating mutations in the dystrophin gene lead to the most common childhood form of muscle wasting, Duchenne muscular dystrophy. Becker muscular dystrophy, a condition that typically arises from dystrophin gene lesions that do not disrupt the reading frame, clearly indicates that substantial domains of the dystrophin protein are not essential. Potential therapeutic intervention exists during pre-mRNA splicing, whereby selected exons are excised to either remove nonsense mutations or restore the reading frame around frame-shifting mutations from the mature mRNA. Appropriately designed antisense oligonucleotides (AOs), directed at amenable splicing motifs across the dystrophin gene transcript, block exon recognition and/or spliceosome assembly so that targeted exons are removed from the mature mRNA. We describe a panel of AOs designed to induce skipping of every exon within the human dystrophin gene transcript, with the exception of the first and last exons. Every exon targeted in vitro could be removed from the dystrophin mRNA, although some exons are more efficiently excluded than others. No single motif has emerged as a universal AO annealing site for redirection of dystrophin pre-mRNA processing, although the general trend is that the most efficient compounds are directed at motifs in the first half of the target exon.
引用
收藏
页码:1288 / 1296
页数:9
相关论文
共 33 条
[1]   Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy [J].
Aartsma-Rus, A ;
Bremmer-Bout, M ;
Janson, AAM ;
den Dunnen, JT ;
van Ommen, GJB ;
van Deutekom, JCT .
NEUROMUSCULAR DISORDERS, 2002, 12 :S71-S77
[2]   Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: Indication for steric hindrance of SR protein binding sites [J].
Aartsma-Rus, A ;
De Winter, CL ;
Janson, AAM ;
Kaman, WE ;
Van Ommen, GJB ;
Den Dunnen, JT ;
van Deutekom, JCT .
OLIGONUCLEOTIDES, 2005, 15 (04) :284-297
[3]   Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense [J].
Aartsma-Rus, A ;
Janson, AAM ;
Kaman, WE ;
Bremmer-Bout, M ;
van Ommen, GJB ;
den Dunnen, JT ;
van Deutekom, JCT .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 74 (01) :83-92
[4]   Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology [J].
Alter, J ;
Lou, F ;
Rabinowitz, A ;
Yin, HF ;
Rosenfeld, J ;
Wilton, SD ;
Partridge, TA ;
Lu, QL .
NATURE MEDICINE, 2006, 12 (02) :175-177
[5]   Neutrally charged phosphorodiamidate morpholino antisense oligomers: Uptake, efficacy and pharmacokinetics [J].
Arora, V ;
Devi, GR ;
Iversen, PL .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2004, 5 (05) :431-439
[6]  
BEGGS AH, 1991, AM J HUM GENET, V49, P54
[7]   ESEfinder: a web resource to identify exonic splicing enhancers [J].
Cartegni, L ;
Wang, JH ;
Zhu, ZW ;
Zhang, MQ ;
Krainer, AR .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3568-3571
[8]  
Emery A E, 1989, Prog Clin Biol Res, V306, P15
[9]   VERY MILD MUSCULAR-DYSTROPHY ASSOCIATED WITH THE DELETION OF 46-PERCENT OF DYSTROPHIN [J].
ENGLAND, SB ;
NICHOLSON, LVB ;
JOHNSON, MA ;
FORREST, SM ;
LOVE, DR ;
ZUBRZYCKAGAARN, EE ;
BULMAN, DE ;
HARRIS, JB ;
DAVIES, KE .
NATURE, 1990, 343 (6254) :180-182
[10]   Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucteotide [J].
Fletcher, S ;
Honeyman, K ;
Fall, AM ;
Harding, PL ;
Russell, J ;
Wilton, SD .
JOURNAL OF GENE MEDICINE, 2006, 8 (02) :207-216