Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers

被引:58
作者
Laible, PD [1 ]
Kirmaier, C
Udawatte, CSM
Hofman, SJ
Holten, D
Hanson, DK
机构
[1] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA
[2] Washington Univ, Dept Chem, St Louis, MO 63130 USA
关键词
D O I
10.1021/bi026959b
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of similar to1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of similar to1 and similar to6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches.
引用
收藏
页码:1718 / 1730
页数:13
相关论文
共 92 条
[1]   CALCULATIONS OF ELECTROSTATIC ENERGIES IN PHOTOSYNTHETIC REACTION CENTERS [J].
ALDEN, RG ;
PARSON, WW ;
CHU, ZT ;
WARSHEL, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (49) :12284-12298
[2]   Orientation of the OH dipole of tyrosine (M)210 and its effect on electrostatic energies in photosynthetic bacterial reaction centers [J].
Alden, RG ;
Parson, WW ;
Chu, ZT ;
Warshel, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (41) :16761-16770
[3]   Free energy dependence of the direct charge recombination from the primary and secondary quinones in reaction centers from Rhodobacter sphaeroides [J].
Allen, JP ;
Williams, JC ;
Graige, MS ;
Paddock, ML ;
Labahn, A ;
Feher, G ;
Okamura, MY .
PHOTOSYNTHESIS RESEARCH, 1998, 55 (2-3) :227-233
[4]   STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER-SPHAEROIDES R-26 - THE COFACTORS .1. [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
KOMIYA, H ;
REES, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (16) :5730-5734
[5]   HETEROGENEITY OF THE QUINONE ELECTRON-ACCEPTOR SYSTEM IN BACTERIAL REACTION CENTERS [J].
BACIOU, L ;
SEBBAN, P .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1995, 62 (02) :271-278
[6]   Primary electron transfer in membrane-bound reaction centers with mutations at the M210 position [J].
Beekman, LMP ;
vanStokkum, IHM ;
Monshouwer, R ;
Rijnders, AJ ;
McGlynn, P ;
Visschers, RW ;
Jones, MR ;
vanGrondelle, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (17) :7256-7268
[7]   A GENETIC SYSTEM FOR RAPIDLY ASSESSING HERBICIDES THAT COMPETE FOR THE QUINONE BINDING-SITE OF PHOTOSYNTHETIC REACTION CENTERS [J].
BYLINA, EJ ;
JOVINE, RVM ;
YOUVAN, DC .
BIO-TECHNOLOGY, 1989, 7 (01) :69-74
[8]  
BYLINA EJ, 1988, ISRAEL J CHEM, V28, P73
[9]   INITIAL ELECTRON-TRANSFER IN PHOTOSYNTHETIC REACTION CENTERS OF RHODOBACTER-CAPSULATUS MUTANTS [J].
CHAN, CK ;
CHEN, LXQ ;
DIMAGNO, TJ ;
HANSON, DK ;
NANCE, SL ;
SCHIFFER, M ;
NORRIS, JR ;
FLEMING, GR .
CHEMICAL PHYSICS LETTERS, 1991, 176 (3-4) :366-372
[10]   STRUCTURE OF THE MEMBRANE-BOUND PROTEIN PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER-SPHAEROIDES [J].
CHANG, CH ;
ELKABBANI, O ;
TIEDE, D ;
NORRIS, J ;
SCHIFFER, M .
BIOCHEMISTRY, 1991, 30 (22) :5352-5360