This study analyzes the molecular response of articular chondrocytes to short-term mechanical loading with a special focus on gene expression of molecules relevant for matrix turnover. Porcine cartilage explants were exposed to static and dynamic unconfined compression and viability of chondrocytes was assessed to define physiologic loading conditions. Cell death in the superficial layer correlated with mechanical loading and occurred at peak stresses greater than or equal to 6 MPa and a cartilage compression above 45%. Chondrocytes in native cartilage matrix responded to dynamic loading by rapid and highly specific suppression of collagen expression. mRNA levels dropped 11-fold (collagen 2; 6 MPa, P = 0.009) or 14-fold (collagen 1; 3 and 6 MPa, P = 0.009) while levels of aggrecan, tenascin-c, matrix metalloproteinases (MMP1, 3, 13, 14), and their inhibitors (TIMP1-3) did not change significantly. Thus, dynamic mechanical loading rapidly shifted the balance between collagen and aggrecan/tenascin/MMP/TIMP expression. A better knowledge of the chondrocyte response to mechanical stress may improve our understanding of mechanically induced osteoarthrits. (C) 2002 Elsevier Science (USA). All rights reserved.