Anomalous diffusion in infinite horizon billiards

被引:36
作者
Armstead, DN [1 ]
Hunt, BR
Ott, E
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20904 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20904 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20904 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20904 USA
[5] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20904 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.67.021110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the long time dependence for the moments of displacement [\r\(q)] of infinite horizon billiards, given a bounded initial distribution of particles. For a variety of billiard models we find [\r\(q)]similar tot(q)(gamma) (up to factors of ln t). The time exponent, gamma(q), is piecewise linear and equal to q/2 for q<2 and q-1 for q>2. We discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the angle of a particle's velocity vector.
引用
收藏
页数:7
相关论文
共 22 条
[1]  
Afanasiev VV, 1991, CHAOS, V1
[2]  
ARMSTEAD DN, UNPUB
[3]   STATISTICAL PROPERTIES OF 2-DIMENSIONAL PERIODIC LORENTZ GAS WITH INFINITE HORIZON [J].
BLEHER, PM .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :315-373
[4]   STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :479-497
[5]   On strong anomalous diffusion [J].
Castiglione, P ;
Mazzino, A ;
Muratore-Ginanneschi, P ;
Vulpiani, A .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (01) :75-93
[6]   Lyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon using approximate zeta functions [J].
Dahlqvist, P .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (3-4) :773-795
[7]   Strongly and weakly self-similar diffusion [J].
Ferrari, R ;
Manfroi, AJ ;
Young, WR .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 154 (1-2) :111-137
[8]   Lagrangian chaos and correlated Levy flights in a non-Beltrami flow: Transient versus long-term transport [J].
Fogleman, M.A. ;
Fawcett, M.J. ;
Solomon, T.H. .
2001, American Inst of Physics, Woodbury, NY, United States (63)
[9]  
GALLAVOTTI G, 1975, LECTURE NOTES PHYSIC, V38, P236
[10]   CHAOTIC DYNAMICS OF BALLISTIC ELECTRONS IN LATERAL SUPERLATTICES AND MAGNETIC-FIELDS [J].
GEISEL, T ;
WAGENHUBER, J ;
NIEBAUER, P ;
OBERMAIR, G .
PHYSICAL REVIEW LETTERS, 1990, 64 (13) :1581-1584