Swelling of Composite Films at Interfaces

被引:19
作者
Toda, Masaya [1 ]
Joseph, Yvonne [2 ]
Berger, Ruediger [1 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Sony Deutschland GmbH, Mat Sci Lab, D-70327 Stuttgart, Germany
关键词
MICROMECHANICAL CANTILEVER; CHEMIRESISTOR COATINGS; GOLD NANOPARTICLES; VAPOR SENSITIVITY; CHEMICAL SENSORS; ARRAY; RECOGNITION; NANOMECHANICS; MICROSCOPY; MONOLAYERS;
D O I
10.1021/jp9087578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite materials made of metallic nanoparticles embedded in an organic matrix are highly promising candidates as coatings for novel chemical sensors. Micromechanical cantilever measurements revealed that the Au-nanoparticle terphenyldithiol composite material swells upon dosing with toluene vapor. The mass increase was found to be linear with the toluene vapor concentration, approximate to 40 fg/ppm. Furthermore, significant differences in the mechanical transduction of approximate to 100 nm thick Au-nanoparticle terphenyldithiol composite material that was prepared on a 3-aminopropyldimethylmonoethoxysilane (APDMES) surface and on a Au surface were observed. The transduction of swelling of the composite film into a mechanical deflection was found to be more efficient for the composite film prepared on the Au surface attributed to covalent binding of the terphenyldithiol molecules with the Au surface. In contrast, the interface of the APDMES layer and the Au-terphenyldithiol composite material is based on electrostatic interaction between the Au nanoparticles and the amino interface. The analysis of the micromechanical cantilever sensor measurements lead to the conclusion that the composite film at the APDMES interface is more mobile compared to a similar film that was prepared on Au.
引用
收藏
页码:2012 / 2017
页数:6
相关论文
共 32 条
[1]   A cantilever array-based artificial nose [J].
Baller, MK ;
Lang, HP ;
Fritz, J ;
Gerber, C ;
Gimzewski, JK ;
Drechsler, U ;
Rothuizen, H ;
Despont, M ;
Vettiger, P ;
Battiston, FM ;
Ramseyer, JP ;
Fornaro, P ;
Meyer, E ;
Güntherodt, HJ .
ULTRAMICROSCOPY, 2000, 82 (1-4) :1-9
[2]   Micromechanical cantilever as an ultrasensitive pH microsensor [J].
Bashir, R ;
Hilt, JZ ;
Elibol, O ;
Gupta, A ;
Peppas, NA .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :3091-3093
[3]   A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout [J].
Battiston, FM ;
Ramseyer, JP ;
Lang, HP ;
Baller, MK ;
Gerber, C ;
Gimzewski, JK ;
Meyer, E ;
Güntherodt, HJ .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 77 (1-2) :122-131
[4]   From monolayers to nanostructured materials: An organic chemist's view of self-assembly [J].
Bethell, D ;
Brust, M ;
Schiffrin, DJ ;
Kiely, C .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 409 (1-2) :137-143
[5]   NOVEL GOLD-DITHIOL NANO-NETWORKS WITH NONMETALLIC ELECTRONIC-PROPERTIES [J].
BRUST, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
KIELY, CJ .
ADVANCED MATERIALS, 1995, 7 (09) :795-&
[6]   A sensitive method to measure changes in the surface stress of solids [J].
Butt, HJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 180 (01) :251-260
[7]   Translating biomolecular recognition into nanomechanics [J].
Fritz, J ;
Baller, MK ;
Lang, HP ;
Rothuizen, H ;
Vettiger, P ;
Meyer, E ;
Güntherodt, HJ ;
Gerber, C ;
Gimzewski, JK .
SCIENCE, 2000, 288 (5464) :316-318
[8]   OBSERVATION OF A CHEMICAL-REACTION USING A MICROMECHANICAL SENSOR [J].
GIMZEWSKI, JK ;
GERBER, C ;
MEYER, E ;
SCHLITTLER, RR .
CHEMICAL PHYSICS LETTERS, 1994, 217 (5-6) :589-594
[9]   Combined in situ micromechanical cantilever-based sensing and ellipsometry [J].
Godin, M ;
Laroche, O ;
Tabard-Cossa, V ;
Beaulieu, LY ;
Grütter, P ;
Williams, PJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (11) :4902-4907
[10]   APPLICATION OF (3-MERCAPTOPROPYL)TRIMETHOXYSILANE AS A MOLECULAR ADHESIVE IN THE FABRICATION OF VAPOR-DEPOSITED GOLD ELECTRODES ON GLASS SUBSTRATES [J].
GOSS, CA ;
CHARYCH, DH ;
MAJDA, M .
ANALYTICAL CHEMISTRY, 1991, 63 (01) :85-88