The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression

被引:193
作者
Chou, YF
Huang, WB
Dunn, JCY
Miller, TA
Wu, BM
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Surg, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Weintraub Ctr Reconstruct Biotechnol, Los Angeles, CA 90095 USA
[5] VA Greater Los Angeles Healthcare Syst, Plast Surg Sect, Los Angeles, CA 90073 USA
关键词
apatite structure; bone tissue engineering; biomimetic material; osteoblast; gene expression; mRNA;
D O I
10.1016/j.biomaterials.2004.02.030
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The conventional biomimetic apatite coating process can be accelerated by immersing substrates into concentrated simulated body fluid (5 x SBF) at 37 degreesC to form an initial coating of apatite precursor spheres, and transform the precursors into plate-like apatite structures. Depending on processing parameters, different apatite structures can be created over the same substrate. The purpose of this study is to investigate the effects of the different apatite microenvironment on cell spreading, viability, proliferation, and gene expression. MC3T3-E1 preosteoblasts were cultured on five surfaces: conventional apatite (CA), precursor apatite spheres (PreA), large plate-like apatites (LgA), small plate-like apatites (SmA), and tissue culture grade polystyrene (TCPS). PreA induced significantly higher cell death during the first two weeks. TCPS supported more uniform spreading (1 day) and higher proliferation (2 weeks) than CA, LgA, and SmA. Apatites restricted spreading and promoted the extension of cellular projections along the textured surfaces under confocal microscopy observation. By 3 weeks, LgA induced highest expression of mature osteogenic markers osteocalcin (OCN) and bone sialoprotein (BSP) in both regular and osteogenic culture media based on quantitative real-time RT-PCR. The results of this study suggest differential cell responses to subtle changes in apatite microenvironment. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 47 条
[1]   Matrix regulation of skeletal cell apoptosis - Role of calcium and phosphate ions [J].
Adams, CS ;
Mansfield, K ;
Perlot, RL ;
Shapiro, IM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :20316-20322
[2]   Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution [J].
Barrere, F ;
van Blitterswijk, CA ;
de Groot, K ;
Layrolle, P .
BIOMATERIALS, 2002, 23 (09) :1921-1930
[3]   Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBF x 5 solution: influence of magnesium [J].
Barrere, F ;
van Blitterswijk, CA ;
de Groot, K ;
Layrolle, P .
BIOMATERIALS, 2002, 23 (10) :2211-2220
[4]   Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats [J].
Barrère, F ;
van der Valk, CM ;
Meijer, G ;
Dalmeijer, RAJ ;
de Groot, K ;
Layrolle, P .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2003, 67B (01) :655-665
[5]   Inorganic phosphate as a signaling molecule in osteoblast differentiation [J].
Beck, GR .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2003, 90 (02) :234-243
[6]   Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent [J].
Beck, GR ;
Knecht, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (43) :41921-41929
[7]   Phosphate is a specific signal for induction of osteopontin gene expression [J].
Beck, GR ;
Zerler, B ;
Moran, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8352-8357
[8]  
Beck GR, 1998, J CELL BIOCHEM, V68, P269, DOI 10.1002/(SICI)1097-4644(19980201)68:2<269::AID-JCB13>3.0.CO
[9]  
2-A
[10]  
CHOU YF, IN PRESS BIOMATERIAL