PMMA-based capillary electrophoresis electrochemical detection microchip fabrication

被引:28
作者
Horng, RH [1 ]
Han, P
Chen, HY
Lin, KW
Tsai, TM
Zen, JM
机构
[1] Natl Chung Hsing Univ, Inst Precis Engn, Taichung 402, Taiwan
[2] Natl Chung Hsing Univ, Dept Chem, Taichung 402, Taiwan
关键词
D O I
10.1088/0960-1317/15/1/002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
yIn this paper, a 50 mum (depth) x 50 mum (width) microfluidic channel is made on a poly(methyl methacrylate) (PMMA) substrate using thick photoresist. Openings were drilled for buffer reservoirs on an additional piece of PMMA. A final PMMA/pattemed photoresist/PMMA sandwich configuration was completed using a bonding process. The thick photoresist was used as the adhesion layer and also as the microfluidic system. Using screen-printed technology for carbon and silver electrode fabrication, the microchip electrophoretic device functions were demonstrated. Successful detection of uric acid and L-ascorbic acid (the main components in human urine) validates the functionality of the proposed system. Successful ascorbic and uric acid separation in a sample from a urine donor who had consumed 500 mg of vitamins verified the proposed biochip.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 22 条
[1]   Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis [J].
Carlier, J ;
Arscott, S ;
Thomy, V ;
Fourrier, JC ;
Caron, F ;
Camart, JC ;
Druon, C ;
Tabourier, P .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2004, 14 (04) :619-624
[2]   Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template [J].
Chen, ZF ;
Gao, YH ;
Su, RG ;
Li, CW ;
Lin, JM .
ELECTROPHORESIS, 2003, 24 (18) :3246-3252
[3]  
Dolník V, 2000, ELECTROPHORESIS, V21, P41, DOI 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO
[4]  
2-7
[5]   Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor [J].
El-Ali, J ;
Perch-Nielsen, IR ;
Poulsen, CR ;
Bang, DD ;
Telleman, P ;
Wolff, A .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 110 (1-3) :3-10
[6]  
Fu LM, 2002, ELECTROPHORESIS, V23, P602, DOI 10.1002/1522-2683(200202)23:4<602::AID-ELPS602>3.0.CO
[7]  
2-N
[8]   MICROMACHINING A MINIATURIZED CAPILLARY ELECTROPHORESIS-BASED CHEMICAL-ANALYSIS SYSTEM ON A CHIP [J].
HARRISON, DJ ;
FLURI, K ;
SEILER, K ;
FAN, ZH ;
EFFENHAUSER, CS ;
MANZ, A .
SCIENCE, 1993, 261 (5123) :895-897
[9]  
Hong JW, 2001, ELECTROPHORESIS, V22, P328
[10]  
Huang ZL, 2001, ELECTROPHORESIS, V22, P3924, DOI 10.1002/1522-2683(200110)22:18<3924::AID-ELPS3924>3.0.CO