共 61 条
Transport of Drosophila fragile X rental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein
被引:129
作者:
Ling, SC
Fahrner, PS
Greenough, WT
Gelfand, VI
机构:
[1] Univ Illinois, Neurosci Program, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Cell & Struct Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Psychol & Psychiat, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
来源:
关键词:
microtubules;
molecular motors;
cytoskeleton;
RNA transport;
D O I:
10.1073/pnas.0408114101
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Transport and translation of mRNA are tightly coupled to ensure strict temporal and spatial expression of nascent proteins. Fragile X mental retardation protein (FMRP) has been shown to be involved in translational regulation and is found in ribonucleoprotein (RNP) granules that travel along dendrites of neurons. In this study, GFP-tagged Drosophila homologue of FMRP (dFMR) was used to visualize RNP granule movement in Drosophila S2 cells. GFP-dFMR form granules that contain both endogenous dFMR and mRNA. Live fluorescence microscopy revealed that dFMR-containing RNP granules move bidirectionally in thin processes formed by S2 cells in the presence of cytochalasin D. Knocking down the heavy chains of either kinesin-1 (kinesin heavy chain) or cytoplasmic dynein (dynein heavy chain) by RNA interference blocks the movement of the dFMR granules. In contrast, knockdown of kinesin light chain (KLC), which is typically necessary for movement of membrane organelles by kinesin-1, had no effect on the dFMR granule translocation. In immunoprecipitation assays, dFMR associates with both kinesin heavy chain and dynein heavy chain, but not KLC. Based on these findings, we conclude that dFMR-containing RNP granules are moved by both kinesin-1 and cytoplasmic dynein and that KLC is not essential and is likely missing from RNP-transporting kinesin-1.
引用
收藏
页码:17428 / 17433
页数:6
相关论文