The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven

被引:35
作者
Boraston, AB [1 ]
机构
[1] Univ Victoria, Victoria, BC V8W 3P6, Canada
关键词
adsorption; carbohydrate-binding module; cellulose; cellulose-binding domain; non-crystalline; thermodynamics;
D O I
10.1042/BJ20041473
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Natural cellulose exists as a composite of cellulose forms, which can be broadly characterized as crystalline or non-crystalline. The recognition of both of these forms of cellulose by the CBMs (carbohydrate-binding modules) of microbial glycoside hydrolases is important for the efficient natural and biotechnological conversion of cellulosic biomass. The category of CBM that binds insoluble non-crystalline cellulose does so with an affinity approx. 10-20-fold greater than their affinity for cello-oligosaccharides and/or soluble polysaccharides. This phenomenon has been assumed to originate from the effects of changes in configurational entropy upon binding. The loss of configurational entropy is thought to be less profound upon binding to conformationally restrained insoluble non-crystalline cellulose, resulting in larger free energies of binding. However, using isothermal titration calorimetry, it is shown that this is not the case for the high-affinity interactions of CcCBM17 (the family 17 CBM from EngF of Clostridium cellulovorans) and BspCBM28 (the family 28 CBM from Cel5A of Bacillus species 1139) with regenerated cellulose, an insoluble preparation of primarily non-crystalline cellulose. The enhanced free energy of binding of non-crystalline cellulose relative to cello-oligosaccharides is by virtue of improved enthalpy, not entropy.
引用
收藏
页码:479 / 484
页数:6
相关论文
共 14 条
[1]   Recognition and hydrolysis of noncrystalline cellulose [J].
Boraston, AB ;
Kwan, E ;
Chiu, P ;
Warren, RAJ ;
Kilburn, DG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (08) :6120-6127
[2]   Identification and glucan-binding properties of a new carbohydrate-binding module family [J].
Boraston, AB ;
Ghaffari, M ;
Warren, RAJ ;
Kilburn, DG .
BIOCHEMICAL JOURNAL, 2002, 361 :35-40
[3]   Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A [J].
Boraston, AB ;
Creagh, AL ;
Alam, MM ;
Kormos, JM ;
Tomme, P ;
Haynes, CA ;
Warren, RAJ ;
Kilburn, DG .
BIOCHEMISTRY, 2001, 40 (21) :6240-6247
[4]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781
[5]   Specificity and affinity of substrate binding by a family 17 carbohydrate-binding module from Clostridium cellulovorans cellulase 5A [J].
Boraston, AB ;
Chiu, P ;
Warren, RAJ ;
Kilburn, DG .
BIOCHEMISTRY, 2000, 39 (36) :11129-11136
[6]   Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C [J].
Brun, E ;
Johnson, PE ;
Creagh, AL ;
Tomme, P ;
Webster, P ;
Haynes, CA ;
McIntosh, LP .
BIOCHEMISTRY, 2000, 39 (10) :2445-2458
[7]   CALORIMETRIC ANALYSIS OF THE BINDING OF LECTINS WITH OVERLAPPING CARBOHYDRATE-BINDING LIGAND SPECIFICITIES [J].
CHERVENAK, MC ;
TOONE, EJ .
BIOCHEMISTRY, 1995, 34 (16) :5685-5695
[8]   Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven [J].
Creagh, AL ;
Ong, E ;
Jervis, E ;
Kilburn, DG ;
Haynes, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12229-12234
[9]   C-1-C-X REVISITED - INTRAMOLECULAR SYNERGISM IN A CELLULASE [J].
DIN, N ;
DAMUDE, HG ;
GILKES, NR ;
MILLER, RC ;
WARREN, RAJ ;
KILBURN, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) :11383-11387
[10]   STATISTICAL DETERMINATION OF THE AVERAGE VALUES OF THE EXTINCTION COEFFICIENTS OF TRYPTOPHAN AND TYROSINE IN NATIVE PROTEINS [J].
MACH, H ;
MIDDAUGH, CR ;
LEWIS, RV .
ANALYTICAL BIOCHEMISTRY, 1992, 200 (01) :74-80