Plane waves in cubically nonlinear elastic media

被引:12
作者
Cattani, C [1 ]
Rushchitskii, YY
机构
[1] Univ Roma La Sapienza, Rome, Italy
[2] Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, Kiev, Ukraine
关键词
Wave Equation; Plane Wave; Transverse Plane; Elastic Medium; Interaction Analysis;
D O I
10.1023/A:1022649319505
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The theory of plane waves in nonlinear materials described by the Murnaghan potential is proposed. The theory takes into account both the classical quadratic nonlinearity and the cubic nonlinearity of the basic wave equations. Some new opportunities for the wave interaction analysis are commented on: in addition to the second harmonics, a longitudinal plane wave generates the third one, a transverse plane wave generates the third harmonics, and horizontally and vertically polarized transverse plane waves jointly generate new waves.
引用
收藏
页码:1361 / 1365
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 1999, APPL MECH REV, DOI DOI 10.1115/1.3098925
[2]  
Goldberg Z.A., 1960, Akust. Zh, V6, P307
[3]  
Guz A.N., 1999, FUNDAMENTALS 3 DIMEN
[4]  
Guz AN., 1986, ELASTIC WAVES PRESTR
[5]   INTERACTION OF ELASTIC WAVES IN AN ISOTROPIC SOLID [J].
JONES, GL ;
KORBETT, DR .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1963, 35 (01) :5-&
[6]  
KRYLOV VV, 1986, INTRO PHYSICAL ACOUS
[7]  
Murnaghan F. D., 1951, Finite Deformation of an Elastic Solid
[8]   Extension of the microstructural theory of two-phase mixtures to composite materials [J].
Rushchitskii, YY .
INTERNATIONAL APPLIED MECHANICS, 2000, 36 (05) :586-614
[9]   Self-switching of waves in materials [J].
Rushchitskii, YY .
INTERNATIONAL APPLIED MECHANICS, 2001, 37 (11) :1492-1498
[10]  
RUSHCHITSKII YY, 1998, WAVES MAT MICROSTRUC