Direct structural evidence for formation of a stem-loop structure involved in ribosomal frameshifting in human immunodeficiency virus type 1

被引:21
作者
Kang, KS [1 ]
机构
[1] Korea Kumho Petrochem Co Ltd, Kumho Life & Environm Sci Lab, Kwangju, South Korea
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION | 1998年 / 1397卷 / 01期
关键词
frameshifting; HIV; hairpin; pseudoknot; RNA;
D O I
10.1016/S0167-4781(98)00004-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Programmed ribosomal frameshifting in viral messenger RNA occurs in response to neighboring sequence elements consisting of: a frameshift site, a spacer, and a downstream enhancer sequence. In human immunodeficiency virus type I (HIV-1) mRNA, this sequence element has a potential to form either a stem-loop or a pseudoknot structure. Based on many mutational studies, the stem-loop structure has been proposed for the downstream enhancer region of the HIV-1 mRNA. This stimulatory stem-loop structure is separated from the shift site by a spacer of seven nucleotides. In contrast, a recent report has proposed an alternative model in which the bases in the spacer sequence form a pseudoknot structure as the downstream enhancer sequence [Du et al., Biochemistry 35 (1996) 4187-4198.]. Using UV melting and enzymatic mapping analyses, we have investigated the conformation of the sequence region involved in ribosomal frameshifting in HIV-1. Our S-1, V-1, and T-1 endonuclease mappings, together with UV melting analysis, clearly indicate that this sequence element of the HIV-1 mRNA frameshift site forms a stem-loop structure, not a pseudoknot structure. This finding further supports the stem-loop structure proposed by many mutational studies for the downstream enhancer sequence of the HIV-1 mRNA. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 20 条
[1]   RIBOSOME GYMNASTICS - DEGREE OF DIFFICULTY 9.5, STYLE 10.0 [J].
ATKINS, JF ;
WEISS, RB ;
GESTELAND, RF .
CELL, 1990, 62 (03) :413-423
[2]   CHARACTERIZATION OF AN EFFICIENT CORONAVIRUS RIBOSOMAL FRAMESHIFTING SIGNAL - REQUIREMENT FOR AN RNA PSEUDOKNOT [J].
BRIERLEY, I ;
DIGARD, P ;
INGLIS, SC .
CELL, 1989, 57 (04) :537-547
[3]   RIBOSOMAL FRAMESHIFTING ON VIRAL RNAS [J].
BRIERLEY, I .
JOURNAL OF GENERAL VIROLOGY, 1995, 76 :1885-1892
[4]   Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: A model for a possible family of structurally related RNA pseudoknots [J].
Du, ZH ;
Giedroc, DP ;
Hoffman, DW .
BIOCHEMISTRY, 1996, 35 (13) :4187-4198
[5]   An NMR and mutational study of the pseudoknot within the gene 32 mRNA of bacteriophage T2: Insights into a family of structurally related RNA pseudoknots [J].
Du, ZH ;
Hoffman, DW .
NUCLEIC ACIDS RESEARCH, 1997, 25 (06) :1130-1135
[6]   2 CIS-ACTING SIGNALS CONTROL RIBOSOMAL FRAMESHIFT BETWEEN HUMAN T-CELL LEUKEMIA-VIRUS TYPE-II GAG AND PRO GENES [J].
FALK, H ;
MADOR, N ;
UDI, R ;
PANET, A ;
HONIGMAN, A .
JOURNAL OF VIROLOGY, 1993, 67 (10) :6273-6277
[7]   RNA SIGNALS FOR TRANSLATION FRAMESHIFT - INFLUENCE OF STEM SIZE AND SLIPPERY SEQUENCE [J].
HONDA, A ;
NAKAMURA, T ;
NISHIMURA, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 213 (02) :575-582
[8]   PROKARYOTIC RIBOSOMES RECODE THE HIV-1 GAG-POL-1 FRAMESHIFT SEQUENCE BY AN E/P SITE POST-TRANSLOCATION SIMULTANEOUS SLIPPAGE MECHANISM [J].
HORSFIELD, JA ;
WILSON, DN ;
MANNERING, SA ;
ADAMSKI, FM ;
TATE, WP .
NUCLEIC ACIDS RESEARCH, 1995, 23 (09) :1487-1494
[9]   CHARACTERIZATION OF RIBOSOMAL FRAMESHIFTING IN HIV-1 GAG-POL EXPRESSION [J].
JACKS, T ;
POWER, MD ;
MASIARZ, FR ;
LUCIW, PA ;
BARR, PJ ;
VARMUS, HE .
NATURE, 1988, 331 (6153) :280-283
[10]  
JACKS T, 1990, CURR TOP MICROBIOL, V157, P93