Residence time distribution of a Brownian particle

被引:57
作者
Berezhkovskii, AM [1 ]
Zaloj, V
Agmon, N
机构
[1] Hebrew Univ Jerusalem, Dept Phys Chem, Fritz Haber Res Ctr, IL-91904 Jerusalem, Israel
[2] LY Karpov Phys Chem Res Inst, Moscow 103064, Russia
[3] State Univ Moldova, Dept Phys, MD-2009 Chisinau, Moldova
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 04期
关键词
D O I
10.1103/PhysRevE.57.3937
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The residence time of a Brownian particle within a spatial domain is the total time it spends within this domain. It is shown that the residence time distribution can be calculated from the survival probability for a constant trapping rate inside the domain. This isomorphism is exploited to derive explicit relations for the distribution and its moments fora three-dimensional spherical domain. Results are verified by a Brownian dynamics simulation.
引用
收藏
页码:3937 / 3947
页数:11
相关论文
共 25 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[3]   Diffusive reaction rates from Brownian dynamics simulations - Comment [J].
Agmon, N ;
Zaloj, V .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (16) :6505-6506
[4]   RESIDENCE TIMES IN DIFFUSION-PROCESSES [J].
AGMON, N .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3644-3647
[5]   ON THE DIRECT ENERGY-TRANSFER VIA EXCHANGE TO MOVING ACCEPTORS [J].
ALLINGER, K ;
BLUMEN, A .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (06) :2762-2771
[6]  
[Anonymous], 1986, NUMERICAL RECIPES C
[7]  
Baclawski K., 1979, M KAC PROBABILITY NU
[8]  
BLUMEN A, 1981, J CHEM PHYS, V75, P8925
[9]  
Darling D. A., 1957, T AM MATH SOC, V84, P444
[10]   BROWNIAN DYNAMICS WITH HYDRODYNAMIC INTERACTIONS [J].
ERMAK, DL ;
MCCAMMON, JA .
JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (04) :1352-1360