Are protein folds atypical?

被引:98
作者
Li, H [1 ]
Tang, C [1 ]
Wingreen, NS [1 ]
机构
[1] NEC Res Inst, Princeton, NJ 08540 USA
关键词
D O I
10.1073/pnas.95.9.4987
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein structures are a very special class among all possible structures. It has been suggested that a "designability principle" plays a crucial role in nature's selection of protein sequences and structures. Here, we provide a theoretical base for such a selection principle, using a simple model of protein folding based on hydrophobic interactions. A structure is reduced to a string of 0s and 1s, which represent the surface and core sites, respectively, as the backbone is traced. Each structure is therefore associated with one point in a high dimensional space. Sequences are represented by strings of their hydrophobicities and thus can be mapped into the same space. A sequence that lies closer to a particular structure in this space than to any other structures will have that structure as its ground state. Atypical structures, namely those far away from other structures in the high dimensional space, have more sequences that fold into them and are thermodynamically more stable. We argue that the most common folds of proteins are the most atypical in the space of possible structures.
引用
收藏
页码:4987 / 4990
页数:4
相关论文
共 29 条
[1]   HYDROPHOBIC BONDING AND ACCESSIBLE SURFACE-AREA IN PROTEINS [J].
CHOTHIA, C .
NATURE, 1974, 248 (5446) :338-339
[2]   THE CLASSIFICATION AND ORIGINS OF PROTEIN FOLDING PATTERNS [J].
CHOTHIA, C ;
FINKELSTEIN, AV .
ANNUAL REVIEW OF BIOCHEMISTRY, 1990, 59 :1007-1039
[3]   PROTEINS - 1000 FAMILIES FOR THE MOLECULAR BIOLOGIST [J].
CHOTHIA, C .
NATURE, 1992, 357 (6379) :543-544
[4]   STRUCTURE OF PROTEINS - PACKING OF ALPHA-HELICES AND PLEATED SHEETS [J].
CHOTHIA, C ;
LEVITT, M ;
RICHARDSON, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (10) :4130-4134
[5]   DOMINANT FORCES IN PROTEIN FOLDING [J].
DILL, KA .
BIOCHEMISTRY, 1990, 29 (31) :7133-7155
[6]   SOLVATION ENERGY IN PROTEIN FOLDING AND BINDING [J].
EISENBERG, D ;
MCLACHLAN, AD .
NATURE, 1986, 319 (6050) :199-203
[7]   WHY ARE THE SAME PROTEIN FOLDS USED TO PERFORM DIFFERENT FUNCTIONS [J].
FINKELSTEIN, AV ;
GUTUN, AM ;
BADRETDINOV, AY .
FEBS LETTERS, 1993, 325 (1-2) :23-28
[8]   WHY DO GLOBULAR-PROTEINS FIT THE LIMITED SET OF FOLDING PATTERNS [J].
FINKELSTEIN, AV ;
PTITSYN, OB .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1987, 50 (03) :171-190
[9]   RANDOM SUBDIVISIONS OF SPACE INTO CRYSTALS [J].
GILBERT, EN .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :958-&