Translational control in virus-infected cells: models for cellular stress responses

被引:38
作者
Clemens, MJ [1 ]
机构
[1] St George Hosp, Sch Med, Dept Basic Med Sci, Tranlat Control Grp, London SW17 0RE, England
关键词
apoptosis; cell stress; initiation factor; protein synthesis; viral infection;
D O I
10.1016/j.semcdb.2004.11.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Protein synthesis is regulated at the translational level by a variety of mechanisms in virus-infected cells. Viruses often induce the shut-off of host translation in order to favour the expression of their own genetic information, but cells possess a number of strategies for counteracting such effects of infection. Important regulatory mechanisms include the phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF2, RNA degradation mediated by the 2'5'-oligoadenylate/RNase L, system, control of availability of the cap-binding protein eIF4E by its interaction with the 4E-binding proteins and specific proteolytic cleavage of several key initiation factors. Most of these mechanisms are also utilised in uninfected cells in response to a variety of physiological stresses and during the early stages of apoptosis. Thus, mechanisms of translational control during virus infection can provide models for the cellular stress responses observed in a wide range of other circumstances. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 97 条
[1]   The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases [J].
Alvarez, E ;
Menéndez-Arias, L ;
Carrasco, L .
JOURNAL OF VIROLOGY, 2003, 77 (23) :12392-12400
[2]  
Anderson P, 2002, J CELL SCI, V115, P3227
[3]   Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells [J].
Belsham, GJ ;
McInerney, GM ;
Ross-Smith, N .
JOURNAL OF VIROLOGY, 2000, 74 (01) :272-280
[4]   To kill or be killed: viral evasion of apoptosis [J].
Benedict, CA ;
Norris, PS ;
Ware, CF .
NATURE IMMUNOLOGY, 2002, 3 (11) :1013-1018
[5]   Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability [J].
Beugnet, A ;
Tee, AR ;
Taylor, PM ;
Proud, CG .
BIOCHEMICAL JOURNAL, 2003, 372 :555-566
[6]   AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. [J].
Bolster, DR ;
Crozier, SJ ;
Kimball, SR ;
Jefferson, LS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :23977-23980
[7]   Mass spectrometric analysis of the N terminus of translational initiation factor eIF4G-1 reveals novel isoforms [J].
Bradley, CA ;
Padovan, JC ;
Thompson, TL ;
Benoit, CA ;
Chait, BT ;
Rhoads, RE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (15) :12559-12571
[8]   Cleavage of polypeptide chain initiation factor eIF4Gl during apoptosis in lymphoma cells: characterisation of an internal fragment generated by caspase-3-mediated cleavage [J].
Bushell, M ;
Poncet, D ;
Marissen, WE ;
Flotow, H ;
Lloyd, RE ;
Clemens, MJ ;
Morley, SJ .
CELL DEATH AND DIFFERENTIATION, 2000, 7 (07) :628-636
[9]   Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis [J].
Bushell, M ;
Wood, W ;
Clemens, MJ ;
Morley, SJ .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (04) :1083-1091
[10]   Hijacking the translation apparatus by RNA viruses [J].
Bushell, M ;
Sarnow, P .
JOURNAL OF CELL BIOLOGY, 2002, 158 (03) :395-399