Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways

被引:83
作者
Wojda, I
Alonso-Monge, R
Bebelman, JP
Mager, WH
Siderius, M
机构
[1] Free Univ Amsterdam, Bioctr, IMBW, Dept Biochem & Mol Biol, NL-1081 HV Amsterdam, Netherlands
[2] Marie Curie Sklodowska Univ, Inst Biol, Dept Invertebrate Immunol, PL-20033 Lublin, Poland
来源
MICROBIOLOGY-SGM | 2003年 / 149卷
关键词
D O I
10.1099/mic.0.26110-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In the yeast Saccharomyces cerevisiae, response to an increase in external osmolarity is mediated by the HOG (high osmolarity glycerol) MAP kinase pathway. HOG pathway mutant strains display osmosensitive phenotypes. Recently evidence has been obtained that the osmosensitivity of HOG pathway mutants is reduced during growth at elevated temperature (37 degreesC). A notable exception is the ste11ssk2ssk22 mutant, which displays hypersensitivity to osmotic stress at 37 degreesC. This paper reports that overexpression of FPS1 or GPD1 (encoding the glycerol transport facilitator and glycerol-3-phosphate dehydrogenase, respectively, and both affecting intracellular glycerol levels) reduces the hypersensitivity to osmotic stress of ste11ssk2ssk22 at 37 degreesC. Although in this particular HOG pathway mutant a correlation between suppression of the phenotype and glycerol content could be demonstrated, the absolute level of intracellular glycerol per se does not determine whether a strain is osmosensitive or not. Rather, evidence was obtained that the glycerol level may have an indirect effect, viz. by influencing signalling through the PKC (protein kinase C) MAP kinase pathway, which plays an important role in maintenance of cellular integrity. In order to validate the data obtained with a HOG pathway mutant strain for wild-type yeast cells, MAP kinase signalling under different growth conditions was examined in wild-type strains. PKC pathway signalling, which is manifest at elevated growth temperature by phosphorylation of MAP kinase Mpk1p, is rapidly lost when cells are shifted to high external osmolarity conditions. Expression of bck1-20 or overexpression of WSC3 in wild-type cells resulted in restoration of PKC signalling. Both PKC and HOG signalling, cell wall phenotypes and high osmotic stress responses in wild-type cells were found to be influenced by the growth temperature. The data taken together indicate the intricate interdependence of growth temperature, intracellular glycerol, cell wall structure and MAP kinase signalling in the hyperosmotic stress response of yeast.
引用
收藏
页码:1193 / 1204
页数:12
相关论文
共 49 条
[1]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[2]   Regulation of cell cycle progression by Swe1p and Hog1a following hypertonic stress [J].
Alexander, MR ;
Tyers, M ;
Perret, M ;
Craig, BM ;
Fang, KS ;
Gustin, MC .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) :53-62
[3]   Role of the mitogen-activated protein kinase hog1p in morphogenesis and virulence of Candida albicans [J].
Alonso-Monge, R ;
Navarro-García, F ;
Molero, G ;
Diez-Orejas, R ;
Gustin, M ;
Pla, J ;
Sánchez, M ;
Nombela, C .
JOURNAL OF BACTERIOLOGY, 1999, 181 (10) :3058-3068
[4]   Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects [J].
Alonso-Monge, R ;
Real, E ;
Wojda, I ;
Bebelman, JP ;
Mager, WH ;
Siderius, M .
MOLECULAR MICROBIOLOGY, 2001, 41 (03) :717-730
[5]   Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae [J].
Belli, G ;
Garí, E ;
Aldea, M ;
Herrero, E .
MOLECULAR MICROBIOLOGY, 2001, 39 (04) :1022-1035
[6]   Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1 [J].
Bilsland-Marchesan, E ;
Ariño, J ;
Saito, H ;
Sunnerhagen, P ;
Posas, F .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (11) :3887-3895
[7]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[8]   OSMOTIC-STRESS AND THE YEAST CYTOSKELETON - PHENOTYPE-SPECIFIC SUPPRESSION OF AN ACTIN MUTATION [J].
CHOWDHURY, S ;
SMITH, KW ;
GUSTIN, MC .
JOURNAL OF CELL BIOLOGY, 1992, 118 (03) :561-571
[9]  
Cullen PJ, 2000, GENETICS, V155, P1005
[10]  
DAVENPORT KR, 1995, J BIOL CHEM, V270, P30157