A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate

被引:322
作者
Walter, BP
Heimann, M
机构
[1] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[2] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[3] Max Planck Inst Meteorol, Hamburg, Germany
关键词
D O I
10.1029/1999GB001204
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Methane emissions from natural wetlands constitute the largest methane source at present and depend highly on the climate. In order to investigate the response of methane emissions from natural wetlands to climate variations, a one-dimensional process-based climate-sensitive model to derive methane emissions from natural wetlands is developed. In the model the processes leading to methane emission are simulated within a one-dimensional soil column and the three different transport mechanisms, diffusion, plant-mediated transport, and ebullition, are modeled explicitly. The model forcing consists of daily values of soil temperature, water table, and net primary productivity, and at permafrost sites the thaw depth is included. The methane model is tested using observational data obtained at five wetland sites located in North America, Europe, and Central America, representing a large variety of environmental conditions. It can be shown that in most cases seasonal variations in methane emissions can be explained by the combined effect of changes in soil temperature and the position of the water table. Our results also show that a process-based approach is needed because there is no simple relationship between these controlling factors and methane emissions that applies to a variety of wetland sites. The sensitivity of the model to the choice of key model parameters is tested and further sensitivity tests are performed to demonstrate how methane emissions from wetlands respond to longer-term climate variations.
引用
收藏
页码:745 / 765
页数:21
相关论文
共 81 条
[1]   Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland [J].
Alm, J ;
Talanov, A ;
Saarnio, S ;
Silvola, J ;
Ikkonen, E ;
Aaltonen, H ;
Nykanen, H ;
Martikainen, PJ .
OECOLOGIA, 1997, 110 (03) :423-431
[2]  
[Anonymous], 1996, Intergovernmental Panel on Climate Change
[3]   METHANE FLUX FROM WETLANDS AREAS [J].
BAKERBLOCKER, A ;
DONAHUE, TM ;
MANCY, KH .
TELLUS, 1977, 29 (03) :245-250
[4]   METHANE FLUX FROM THE AMAZON RIVER FLOODPLAIN - EMISSIONS DURING RISING WATER [J].
BARTLETT, KB ;
CRILL, PM ;
BONASSI, JA ;
RICHEY, JE ;
HARRISS, RC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D10) :16773-16788
[5]   METHANE EMISSIONS FROM TUNDRA ENVIRONMENTS IN THE YUKON-KUSKOKWIM DELTA, ALASKA [J].
BARTLETT, KB ;
CRILL, PM ;
SASS, RL ;
HARRISS, RC ;
DISE, NB .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D15) :16645-16660
[6]   REVIEW AND ASSESSMENT OF METHANE EMISSIONS FROM WETLANDS [J].
BARTLETT, KB ;
HARRISS, RC .
CHEMOSPHERE, 1993, 26 (1-4) :261-320
[7]   A NEW TECHNIQUE FOR ESTIMATING RATES OF CARBOXYLATION AND ELECTRON-TRANSPORT IN LEAVES OF C-3 PLANTS FOR USE IN DYNAMIC GLOBAL VEGETATION MODELS [J].
BEERLING, DJ ;
QUICK, WP .
GLOBAL CHANGE BIOLOGY, 1995, 1 (04) :289-294
[8]   KINETICS OF CH4 OXIDATION IN OXIC SOILS EXPOSED TO AMBIENT AIR OR HIGH CH4 MIXING RATIOS [J].
BENDER, M ;
CONRAD, R .
FEMS MICROBIOLOGY ECOLOGY, 1992, 101 (04) :261-270
[9]   Methane fluxes from an Australian floodplain wetland: The importance of emergent macrophytes [J].
Boon, PI ;
Sorrell, BK .
JOURNAL OF THE NORTH AMERICAN BENTHOLOGICAL SOCIETY, 1995, 14 (04) :582-598
[10]   MECHANISMS CONTROLLING SOIL RESPIRATION (CO2 AND CH4) IN SOUTHERN PEATLANDS [J].
BRIDGHAM, SD ;
RICHARDSON, CJ .
SOIL BIOLOGY & BIOCHEMISTRY, 1992, 24 (11) :1089-1099