Inhibition of Akt and its anti-apoptotic activities by tumor necrosis factor-induced protein kinase C-related kinase 2 (PRK2) cleavage

被引:60
作者
Koh, H
Lee, KH
Kim, D
Kim, S
Kim, JW
Chung, J
机构
[1] Korea Adv Inst Sci & Technol, Dept Biol Sci, Taejon 305701, South Korea
[2] Pai Chai Univ, Dept Biochem, Taejon 302735, South Korea
关键词
D O I
10.1074/jbc.M001753200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Akt is stimulated by several growth factors and has a major anti-apoptotic role in the cell. Therefore, we hypothesized that a pathway leading to the inhibition of Akt might be utilized in the process of apoptosis. Accordingly, we used a yeast two-hybrid screening assay to identify the proteins that interact with and possibly inhibit Akt, We found that the C-terminal region of protein kinase C-related kinase 2 (PRK2), containing amino acids 862 to 908, specifically binds to Akt in yeast and mammalian cells. During early stages of apoptosis, the C-terminal region of PRK2 is cleaved from the inhibitory N-terminal region and can bind Akt, The protein-protein interaction between Akt and the PRK2 C-terminal region specifically down-modulates the protein kinase activities of Akt by inhibiting phosphorylation at threonine 308 and serine 473 of Akt, This inhibition of Abt leads to the inhibition of the downstream signaling of Akt in vivo. The PRK2 C-terminal fragment strongly inhibits the Akt-mediated phosphorylation of BAD, a pro-apoptotic Bcl-2 family protein, and blocks the anti-apoptotic activities of Akt in vivo. These results provide direct evidence that the products of protein cleavage during apoptosis inhibit pro-survival signalings, leading to the amplification of pro-apoptotic signalings in the cell.
引用
收藏
页码:34451 / 34458
页数:8
相关论文
共 55 条
[1]   Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase [J].
Ahmed, NN ;
Grimes, HL ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3627-3632
[2]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[3]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[4]   Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B [J].
Anderson, KE ;
Coadwell, J ;
Stephens, LR ;
Hawkins, PT .
CURRENT BIOLOGY, 1998, 8 (12) :684-691
[5]   Role of translocation in the activation and function of protein kinase B [J].
Andjelkovic, M ;
Alessi, DR ;
Meier, R ;
Fernandez, A ;
Lamb, NJC ;
Frech, M ;
Cron, P ;
Cohen, P ;
Lucocq, JM ;
Hemmings, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31515-31524
[6]   Evidence that 3-phosphoinositide-dependent protein kinase-1 mediates phosphorylation of p70 56 kinase in vivo at Thr-412 as well as Thr-252 [J].
Balendran, A ;
Currie, R ;
Armstrong, CG ;
Avruch, J ;
Alessi, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (52) :37400-37406
[7]   PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 [J].
Balendran, A ;
Casamayor, A ;
Deak, M ;
Paterson, A ;
Gaffney, P ;
Currie, R ;
Downes, CP ;
Alessi, DR .
CURRENT BIOLOGY, 1999, 9 (08) :393-404
[8]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[9]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[10]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321