Stability of the Ricci flow at Ricci-flat metrics

被引:58
作者
Guenther, C [1 ]
Isenberg, J
Knopf, D
机构
[1] Univ Pacific, Stockton, CA 95211 USA
[2] Univ Oregon, Eugene, OR 97403 USA
[3] Univ Wisconsin, Madison, WI 53706 USA
关键词
D O I
10.4310/CAG.2002.v10.n4.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If g is a metric whose Ricci flow g (t) converges, one may ask if the same is true for metrics (g) over tilde that are small perturbations of g. We use maximal regularity theory and center manifold analysis to study flat and Ricci-flat metrics. We show that if g is flat, there is a unique exponentially-attractive center manifold at g consisting entirely of equilibria for the flow. Adding a continuity argument, we prove stability for any metric whose Ricci flow converges to a flat metric. We obtain a slightly weaker stability result for a Kahler-Einstein metric on a K3 manifold.
引用
收藏
页码:741 / 777
页数:37
相关论文
共 39 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175
[2]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[3]  
AVEZ A, 1977, CR ACAD SCI A MATH, V284, P1219
[4]  
Beauville A., 1985, GEOMETRIE SURFACES K
[5]  
Berger M., 1969, J. Differential Geometry, V3, P379
[6]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[7]  
BOURGUIGNON JP, 1981, 8 GEOM RIEM DIM 4 SE, P308
[8]  
BOURGUIGNON JP, 1981, FORMULES WEITZENBOCK, V4, P156
[9]  
BUTZER PL, 1971, J FUNCT ANAL, V7, P242
[10]  
BUZZANCA C, 1984, B UNIONE MAT ITAL, V3B, P531