Disordered spherical bead packs are anisotropic

被引:74
作者
Schroeder-Turk, G. E. [1 ]
Mickel, W. [1 ]
Schroeter, M. [2 ,3 ]
Delaney, G. W. [4 ]
Saadatfar, M. [5 ,6 ]
Senden, T. J. [6 ]
Mecke, K. [1 ]
Aste, T. [6 ,7 ]
机构
[1] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
[2] Univ Texas Austin, Ctr Nonlinear Dynam, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[4] CSIRO Math Informat & Stat, Clayton, Vic 3168, Australia
[5] Trinity Coll Dublin, Sch Phys, Dublin, Ireland
[6] Australian Natl Univ, Dept Appl Math, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[7] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England
关键词
CLOSE PACKING; VALUATIONS; SPHERES; DISKS;
D O I
10.1209/0295-5075/90/34001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Investigating how tightly objects pack space is a long-standing problem, with relevance for many disciplines from discrete mathematics to the theory of glasses. Here we report on the fundamental yet so far overlooked geometric property that disordered mono-disperse spherical bead packs have significant local structural anisotropy manifest in the shape of the free space associated with each bead. Jammed disordered packings from several types of experiments and simulations reveal very similar values of the cell anisotropy, showing a linear decrease with packing fraction. Strong deviations from this trend are observed for unjammed configurations and for partially crystalline packings above 64%. These findings suggest an inherent geometrical reason why, in disordered packings, anisotropic shapes can fill space more efficiently than spheres, and have implications for packing effects in non-spherical liquid crystals, foams and structural glasses.
引用
收藏
页数:6
相关论文
共 29 条
  • [1] Description of continuous isometry covariant valuations on convex sets
    Alesker, S
    [J]. GEOMETRIAE DEDICATA, 1999, 74 (03) : 241 - 248
  • [2] Variations around disordered close packing
    Aste, T
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (24) : S2361 - S2390
  • [3] Investigating the geometrical structure of disordered sphere packings
    Aste, T
    Saadatfar, M
    Sakellariou, A
    Senden, TJ
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (1-2) : 16 - 23
  • [4] An invariant distribution in static granular media
    Aste, T.
    Di Matteo, T.
    Saadatfar, M.
    Senden, T. J.
    Schroeter, Matthias
    Swinney, Harry L.
    [J]. EPL, 2007, 79 (02)
  • [5] Geometrical structure of disordered sphere packings
    Aste, T
    Saadatfar, M
    Senden, TJ
    [J]. PHYSICAL REVIEW E, 2005, 71 (06):
  • [6] Aste T., 2000, The pursuit of perfect packing
  • [7] The Quickhull algorithm for convex hulls
    Barber, CB
    Dobkin, DP
    Huhdanpaa, H
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04): : 469 - 483
  • [8] Extended morphometric analysis of neuronal cells with Minkowski valuations
    Beisbart, C.
    Barbosa, M. S.
    Wagner, H.
    Costa, L. da F.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2006, 52 (04) : 531 - 546
  • [9] DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES
    CUNDALL, PA
    STRACK, ODL
    [J]. GEOTECHNIQUE, 1979, 29 (01): : 47 - 65
  • [10] Random packing of elliptical disks
    Delaney, G
    Weaire, D
    Hutzler, S
    Murphy, S
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2005, 85 (02) : 89 - 96