A polylogarithmic approximation algorithm for the group Steiner tree problem

被引:165
作者
Garg, N [1 ]
Konjevod, G
Ravi, R
机构
[1] Indian Inst Technol, New Delhi 110016, India
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, GSIA, Pittsburgh, PA 15213 USA
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 2000年 / 37卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1006/jagm.2000.1096
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a weighted graph with some subsets of verticcs called groups. the group Steiner tree problem is to find a minimum-weight subgraph which contains at least one vertex from each group. We give a randomized algorithm with a polylogarithmic approximation guarantee for the group Steiner tree problem. The previous best approximation guarantee was O(i(2)k(1/i)) in time O(n(i)k(2i)) (Charikar, Chekuri, Goel. and Guha). Our algorithm also improves existing approximation results fur network design problems with location-based constraints and for the symmetric generalized traveling salesman problem. (C) 2000 Academic Press.
引用
收藏
页码:66 / 84
页数:19
相关论文
共 30 条
[1]  
ALON N, 1903, PROBABILISTIC METHOD
[2]   Polynomial time approximation schemes for euclidean TSP and other geometric problems [J].
Arora, S .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :2-11
[3]  
ARORA S, 1997, P 29 ANN ACM S THEOR, P485
[4]  
Bartal Y., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P161, DOI 10.1145/276698.276725
[5]   Probabilistic approximation of metric spaces and its algorithmic applications [J].
Bartal, Y .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :184-193
[6]  
BATEMAN CD, 1997, P ACM SIGDA INT S PH
[7]  
Charikar M., 1998, PROC 9 ANN ACM SIAM, P192
[8]  
CHEW LP, 1989, J COMPUT SYST SCI, V39, P205, DOI 10.1016/0022-0000(89)90044-5
[9]   A threshold of in n for approximating set cover [J].
Feige, U .
JOURNAL OF THE ACM, 1998, 45 (04) :634-652
[10]   A branch-and-cut algorithm for the symmetric generalized traveling salesman problem [J].
Fischetti, M ;
Gonzalez, JJS ;
Toth, P .
OPERATIONS RESEARCH, 1997, 45 (03) :378-394