Spectral decomposition of expanding probabilistic dynamical systems

被引:5
作者
Antoniou, I
Bosco, F
Suchanecki, Z
机构
[1] Int Solvay Inst Phys & Chem, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Brussels, Belgium
[3] Univ Fed Espirito Santo, Dept Fis, Vitoria 29060900, ES, Spain
[4] Wroclaw Tech Univ, Hugo Steinhaus Ctr, PL-50370 Wroclaw, Poland
[5] Wroclaw Tech Univ, Inst Math, PL-50370 Wroclaw, Poland
关键词
D O I
10.1016/S0375-9601(97)00976-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study probabilistic combinations of expanding dynamical systems, which we call expanding probabilistic dynamical systems, in one dimension. If the system is composed by exact endomorphisms we prove that the probabilistic dynamical system is an exact Markov semigroup, and we determine a generalized spectral decomposition of the associated Markov operator on densities for an example of the tent map coupled with the 2-Renyi map. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 1995, LECT NOTES MATH
[2]   GENERALIZED SPECTRAL DECOMPOSITIONS OF MIXING DYNAMIC-SYSTEMS [J].
ANTONIOU, I ;
TASAKI, S .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1993, 46 (03) :425-474
[3]   Spectral decomposition of piecewise linear monotonic maps [J].
Antoniou, I ;
Qiao, BI .
CHAOS SOLITONS & FRACTALS, 1996, 7 (11) :1895-1911
[4]  
ANTONIOU I, UNPUB CHAOS SOLITONS
[5]   Correlation spectrum of quenched and annealed equilibrium states for random expanding maps [J].
Baladi, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :671-700
[6]  
Bohm A, 1986, QUANTUM MECH FDN APP
[7]  
Brown J., 1976, PURE APPL MATH, V70
[8]  
Dynkin E.B., 1965, Markov processes, DOI [DOI 10.1007/978-3-662-00031-1, 10.1007/978-3-662-00031-1]
[9]  
Feller W., 1968, INTRO PROBABILITY TH, V2
[10]  
Foguel ShaulR., 1969, The Ergodic theory of Markov processes