Efficient transmission and classification of hyperspectral image data

被引:8
作者
Jia, XP [1 ]
Richards, JA
机构
[1] Univ New S Wales, Australian Def Force Acad, Univ Coll, Sch Elect Engn, Campbell, ACT 2600, Australia
[2] Australian Natl Univ, Res Sch Informat Sci & Engn, Canberra, ACT 0200, Australia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2003年 / 41卷 / 05期
关键词
clustering classification; hyperspectral; transmission;
D O I
10.1109/TGRS.2003.810710
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An extension of a newly developed cluster-space representation is applied. to efficient data transmission and classification. Cluster-space classification, which is an automatic hybrid supervised and unsupervised classification procedure, can be performed in two stages. A "sentiprqduct" with low entropy is generated at the sender end. It is then transmitted to a range of users for further classification. Experiments using a HyMap dataset demonstrate the advantages in data transmission and the satisfactory classification accuracy.
引用
收藏
页码:1129 / 1131
页数:3
相关论文
共 5 条
[1]   Robust hyperspectral image coding with channel-optimized trellis-coded quantization [J].
Abousleman, GP ;
Lam, TT ;
Karam, LJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (04) :820-830
[2]   Cluster-space representation for hyperspectral data classification [J].
Jia, XP ;
Richards, JA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (03) :593-598
[3]  
KUO BC, 2002, P IGARSS TOR ON CAN
[4]  
Richards J.A., 2006, REMOTE SENSING DIGIT
[5]   The lossless compression of AVIRIS images by vector quantization [J].
Ryan, MJ ;
Arnold, JF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (03) :546-550