A non-homogeneous regularization method for the estimation of narrow aerosol size distributions

被引:27
作者
Voutilainen, A
Stratmann, F
Kaipio, JP
机构
[1] Univ Kuopio, Dept Appl Phys, FIN-70211 Kuopio, Finland
[2] Inst Tropospher Res, D-04318 Leipzig, Germany
关键词
D O I
10.1016/S0021-8502(00)00044-6
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The determination of particle size distributions from e.g. DMPS or TDMA measurements is an ill-posed problem that is often solved using regularization methods. With Tikhonov-type regularization the standard smoothness assumptions may yield infeasible estimates for the size distribution in cases where the size distribution contains narrow peaks. In this paper we propose a method for the estimation of size distributions with narrow peaks. The method is based on the utilization of a weight function to modify the standard smoothness constraints to obtain nonhomogeneous smoothing effect. In the problem formulation prior assumptions about the weight function are exploited and the size distribution and the weight function can be estimated simultaneously. The performance of the method is evaluated with simulated TDMA data and the results show that good agreement between the estimates and the true size distributions can be achieved. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1433 / 1445
页数:13
相关论文
共 23 条
[1]   DETERMINATION OF ATMOSPHERIC AEROSOL SIZE DISTRIBUTION-FUNCTIONS FROM SCREEN DIFFUSION BATTERY DATA - MATHEMATICAL ASPECTS [J].
BASHUROVA, VS ;
KOUTZENOGIL, KP ;
PUSEP, AY ;
SHOKHIREV, NV .
JOURNAL OF AEROSOL SCIENCE, 1991, 22 (03) :373-388
[2]   Determination of differential mobility analyzer transfer functions using identical instruments in series [J].
Birmili, W ;
Stratmann, F ;
Wiedensohler, A ;
Covert, D ;
Russell, LM ;
Berg, O .
AEROSOL SCIENCE AND TECHNOLOGY, 1997, 27 (02) :215-223
[3]  
BJORCK A, 1996, NUMERICAL METHODS LE
[4]  
CRUMP JG, 1982, AEROSOL SCI TECH, V1, P15
[5]   FITTING MULTIMODAL LOGNORMAL SIZE DISTRIBUTIONS TO CASCADE IMPACTOR DATA [J].
DZUBAY, TG ;
HASAN, H .
AEROSOL SCIENCE AND TECHNOLOGY, 1990, 13 (02) :144-150
[6]  
Groetsch C W., 1993, INVERSE PROBLEMS MAT, DOI [10.1007/978-3-322-99202-4, DOI 10.1007/978-3-322-99202-4]
[7]  
Hanke M., 1993, Surveys on Mathematics for Industry, V3, P253
[8]  
Hansen P., 1998, Rank-Deficient and Discrete Ill-Posed Problems
[9]   Inverse problems with structural prior information [J].
Kaipio, JP ;
Kolehmainen, V ;
Vauhkonen, M ;
Somersalo, E .
INVERSE PROBLEMS, 1999, 15 (03) :713-729
[10]   Inverse methods for analysing aerosol spectrometer measurements: A critical review [J].
Kandlikar, M ;
Ramachandran, G .
JOURNAL OF AEROSOL SCIENCE, 1999, 30 (04) :413-437