The intestinal epithelial barrier: How to distinguish between the microbial flora and pathogens

被引:155
作者
Magalhaes, Joao G.
Tattoli, Ivan
Girardin, Stephen E.
机构
[1] Univ Toronto, Dept Lab Med & Pathobiol, Fac Med, Toronto, ON M5S 1A8, Canada
[2] Inst Pasteur, Unite Pathogenie Microbienne Mol, F-75724 Paris, France
关键词
intestinal immunity; innate immunity; toll-like receptors; nod-like receptors; commensal flora; entero-invasive bacteria;
D O I
10.1016/j.smim.2006.12.006
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The gastrointestinal tract is fundamental for the uptake of nutrients and fluids, but it also represents the greatest surface of the body in contact with the external environment and most human pathogens enter the body through the mucosal surface, especially in the intestine. The intestinal immune system protects the sterile core of the organism against invasion and systemic dissemination of both pathogens and limits for level penetration of commensal microorganisms. In addition, the human intestine is continually in contact with 10(14) commensal bacteria containing more than 500 different species. These commensal bacteria confer health benefits to their host by helping dietary digestion, development of gut immunity and preventing colonization by pathogens. To maintain integrity and normal function of intestine, a delicate equilibrium must be reached between the bacteria] flora and intestinal immune system. This review discusses the recent advances in our understanding of how the mucosal intestinal barrier maintains a local homeostatic response to the resident intestinal bacteria, while protecting the host against enteric pathogens. In particular, the emerging function of Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in controlling mucosal immunity will be presented. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 115
页数:10
相关论文
共 154 条
[1]   Decreased expression of toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide [J].
Abreu, MT ;
Vora, P ;
Faure, E ;
Thomas, LS ;
Arnold, ET ;
Arditi, M .
JOURNAL OF IMMUNOLOGY, 2001, 167 (03) :1609-1616
[2]   NALP3 forms an IL-lβ-Processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder [J].
Agostini, L ;
Martinon, F ;
Burns, K ;
McDermott, MF ;
Hawkins, PN ;
Tschopp, J .
IMMUNITY, 2004, 20 (03) :319-325
[3]  
Aizawa S, 2001, FEMS MICROBIOL LETT, V202, P157, DOI 10.1016/S0378-1097(01)00301-9
[4]   Toll-like receptor signalling [J].
Akira, S ;
Takeda, K .
NATURE REVIEWS IMMUNOLOGY, 2004, 4 (07) :499-511
[5]   MUCUS - A PROTECTIVE SECRETION OF COMPLEXITY [J].
ALLEN, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1983, 8 (05) :169-173
[6]   Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72 [J].
Arvans, DL ;
Vavricka, SR ;
Ren, HY ;
Musch, MW ;
Kang, L ;
Rocha, FG ;
Lucioni, A ;
Turner, JR ;
Alverdy, J ;
Chang, EB .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2005, 288 (04) :G696-G704
[7]   Novel signal transduction pathway utilized by extracellular HSP70 -: Role of Toll-like receptor (TLR) 2 AND TLR4 [J].
Asea, A ;
Rehli, M ;
Kabingu, E ;
Boch, JA ;
Baré, O ;
Auron, PE ;
Stevenson, MA ;
Calderwood, SK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (17) :15028-15034
[8]   Production of type I interferons: plasmacytoid dendritic cells and beyond [J].
Asselin-Paturel, C ;
Trinchieri, G .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (04) :461-465
[9]   Mouse type IIFN-producing cells are immature APCs with plasmacytoid morphology [J].
Asselin-Paturel, C ;
Boonstra, A ;
Dalod, M ;
Durand, I ;
Yessaad, N ;
Dezutter-Dambuyant, C ;
Vicari, A ;
O'Garra, A ;
Biron, C ;
Brière, F ;
Trinchieri, G .
NATURE IMMUNOLOGY, 2001, 2 (12) :1144-1150
[10]   Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes [J].
Auerbuch, V ;
Brockstedt, DG ;
Meyer-Morse, N ;
O'Riordan, M ;
Portnoy, DA .
JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 200 (04) :527-533